Англоязычный вариант может быть кратким или полным


Литература Веденов А. А. Моделирование элементов мышления. М.: Наука, 1988. 159 с. Виноградова О.С



страница4/4
Дата09.08.2019
Размер1.23 Mb.
#126881
1   2   3   4

Литература
Веденов А. А. Моделирование элементов мышления. М.: Наука, 1988. 159 с.
Виноградова О.С. Нейронаука конца второго тысячелетия: смена парадигм // Журнал высш. нервн. деятел. 2000. Т. 50. С. 743-774.
Дунин-Барковский В. Л., Терехин А. Т. Нейронные сети и нейрокомпьютеры: тенденции развития исследований и разработок // Микропроцеcсорные средства и системы. 1990. N 2. C. 12-14.
Мак-Каллок У.С., Питтс У. Логическое исчисление идей, относящихся к нервной активности // Автоматы / пер. с англ. / ред. К. Шеннон, Дж. Маккарти. М.: ИЛ, 1956. С. 362-384. (Англ. оригинал: McCulloch, W. S., Pitts W. A logical calculus of the ideas immanent in neurons activity. Bull. Math. Biophys. 1943. Vol. 5. P. 115–133.)
Минский М., Пейперт С. Перцептроны / пер. с англ. М.: Мир, 1971. 261 с. (Англ. оригинал: Minsky M., Papert S. Perceptrons: An Introduction to Computational Geometry. Cambridge, MA: MIT Press, 1969.)

Розенблат Ф. Принципы нейродинамики. Перцептроны и теория механизмов мозга / пер. с англ. М.: Мир, 1965. 175 с. (Англ. оригинал: Rosenblatt F. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Washington, D.C.: Spartan Books, 1962.)
Терехин А.Т., Будилова Е.В. Сетевые механизмы биологической регуляции // Успехи физиологических наук. 1995. Т. 26. N 4. С. 75-97.
Amari S. Learning patterns and pattern sequences by self-organiz­ing nets of threshold elements. IEEE Trans. Comput. 1972. Vol. 21. P. 1197–1206.
Amit D.J. Modeling brain function. The world of attractor neural networks. New York: Cambridge University Press, 1989.
Ans B., Rousset S. Avoiding catastrophic forgetting by coupling two reverberating neural networks. Comptes Rendus de l’Academie des Sciences – Series III – Sciences de la Vie. 1997. Vol. 320. P. 989–997.
Budilova E.V., Teriokhin A.T. A bibliographic data base on neural networks and neurocomputers // The RNNS/IEEE Symposium on Neuroinformatics and Neurocomputers. Rostov-on-Don, 1992. New York: IEEE, 1992. Vol. 2. P. 1125–1126.
Deniau J. M., Chevalier G. Disinhibition as a basic processin the expression of striatal functions: II. The striato-nigral influenceon thalamocortical cells of the ventromedial thalamic nucleus. Brain Research, 1985. Vol. 334. P. 227–233.
Florian R.V. Biologically inspired neural networks for the control of embodied agents // Center for Cognitive and Neural Studies (Cluj-Napoca, Romania), Technical Report Coneural-03-03, 2003.

http://www.coneural.org.


Frank M.J., Loughry B., O'Reilly R.C. Interactions between the frontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective, and Behavioral Neuroscience. 2001. Vol. 1. P. 137–160.

http://psych.colorado.edu/oreilly/paprers/FrankLoughryOReilly014_fcbg.pdf


French R. M. Pseudo-recurrent connectionist networks: An approach to the “sensitivity–stability” dilemma. Connection Science. 1997. Vol. 9, Issue 4. P. 353–379. http://www.ulg.ac.be/cogsci/rfrench/psdnet.pdf.
French R. M. Selective memory loss in aphasics: An insight from pseudorecurrent connectionist networks. Connectionist Representations // Proceedings of the Fourth Neural Computation and Psychology Workshop / eds. J. Bullinaria, G. Houghton, D. Glasspool. Berlin: Springer-Verlag, 1997. P. 183–195. http://www.ulg.ac.be/cogsci/rfrench/aphasics.pdf.
French R. M. Catastrophic Forgetting in Connectionist Networks. Trends in Cognitive Sciences. 1999. Vol. 3, Issue 4. P. 128–135.

http://www.ulg.ac.be/cogsci/rfrench/TICS_cat_forget.pdf


French R. M., Ans B., Rousset S. Pseudopatterns and dual-network memory models: Advantages and shortcomings // Connectionist Models of Learning, Development and Evolution / eds.R. French, J. Sougné. London: Springer, 2001. P. 13–22.

http://www.ulg.ac.be/cogsci/rfrench/ncpw6_french_ans_rousset.pdf


French R. M., Mareschal, D. Could category-specific semantic deficits reflect differences in the distributions of features within a unified semantic memory? // Proceedings of the Twentieth Annual Cognitive Science SocietyConference. NJ: LEA, 1998. P. 374–379.

http://www.ulg.ac.be/cogsci/rfrench/anomia_98.pdf


Gerstner W. Time structure of the activity in neural network models. Phys. Rev. Evol. 1995. Vol. 51. P. 738–758.

http://diwww.epfl.ch/~gerstner/PUBLICATIONS/Gerstner95PRE.pdf


Gerstner W. Spiking neurons // Pulsed neural networks / eds. Maas, W., Bishop, С. М. Cambridge, MA: MIT Press, 1999. P. 3-53.
Gerstner W., Kempter R., van Hemmen J.L., Wagner H. A neuronal learning rule for sub-millisecond temporal coding. Nature. 1996. Vol. 383. P. 76–78.

http://diwww.epfl.ch/~gerstner/PUBLICATIONS/Nature96-text.pdf http://diwww.epfl.ch/~gerstner/PUBLICATIONS/Nature96-figs.pdf


Gerstner W., Kistler W. M. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge, MA: Cambridge Univ. Press, 2002.

http://diwww.epfl.ch/~gerstner/BUCH.html


Gerstner W., Ritz R., van Hemmen J.L. Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol. Cybern. 1993. Vol. 69. P. 503–515.
Hasselmo M.E., Cannon R.C., Koene R. A simulation of parahippocampal and hippocampal structures guiding spatial navigation of a virtual rat in a virtual environment: A functional framework for theta theory // The Parahippocampal Region: Organization and Role in Cognitive Function / eds. M.P. Witter and F. Wouterlood. London: Oxford Univ. Press, 2002.
Hasselmo M.E., McClelland J.L. Neural models of memory. Current Opinion in Neurobiology. 1999. Vol. 9. P. 184–188.

http://biomednet.com/elecref/0959438800900184.


Hasselmo M.E., Wyble B.P. Simulation of the effects of scopolamine on free recall and recognition in a network model of the hippocampus. Behav. Brain Res. 1997. Vol. 89, 1–34.
Hasselmo M.E., Wyble B.P., Cannon R.C. From spike frequency to free recall: How neural circuits perform encoding and retrieval // The Cognitive Neuroscience of Memory: Encoding and Retrieval / eds. A. Parker, T.J. Bussey, E. Wilding. London: Psychology Press, 2001.

http://people.bu.edu/hasselmo/BusseyChapterFinal.pdf


Hebb D.O. The Organization of Behavior. A Neuropsychlogical Theory. New York: Wiley, 1949.
Herz A. V. M., Sulzer B., Kühn R., van Hemmen J. L. Hebbian learning reconsidered: Representation of static and dynamic objects in associative neural nets. Biol. Cybern. 1989. Vol. 60. P. 457–467.
Hinton G. E., Sejnowski T. J. Learning and relearning in Boltzman machines // Parallel Distributed Processing. Explorations in the Microstructure of Cognition. Cambridge, MA: MIT Press, 1986. Vol. 1. P. 282–317.
Hinton G. E., McClelland J. L. Learning representations by recirculation // Neural information processing systems / ed. D. Z. Anderson. New York: American Institute of Physics, 1988. P. 358–366.
Hodgkin A. L., Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology. 1952. Vol. 117. P. 500–544.
Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA. 1982. Vol. 79, Issue 8. P. 2554–2558. http://www.pnas.org/cgi/reprint/79/8/2554
Hopfield J.J. Neurons with graded response have collective computational properties like those of two-stat neurons. Proc. Natl. Acad. Sci. USA. 1984. Vol. 81. P. 3088–3092. http://www.pnas.org
Izhikevich E. M. Simple model of spiking neurons, IEEE Transactions on Neural Networks. 2003. Vol. 14, Issue 6. P. 1569–1572.

http://www.nsi.edu/users/izhikevich/publications/spikes.htm


Izhikevich E. M. Which model to use for cortical spiking neurons, IEEE Transactions on Neural Networks. 2003. Vol. 15. P. 1063–1070.

http://www.nsi.edu/users/izhikevich/publications/whichmod.htm


Kirkpatrick S., Gelatt C. D., Vecchi M. P. Optimization by simulated annealing. Science. 1983. Vol. 220. P. 671–680.
Kleinfeld D. Sequential state generation by model neural networks, Proc. Nat. Acad. Sci. USA. 1986. Vol. 83. P. 9469–9473.

http://www.pnas.org


Maass W. Networks of Spiking Neurons: The Third Generation of Neural Network Models. Neural Networks. 1997. Vol. 10, Issue 9. P. 1659-1671.

http://www.eccc.uni-trier.de/eccc


Maass W., Natschläger T. Associative memory with networks of spiking neurons in temporal coding // Neuromorphic Systems: Engineering Silicon from Neurobiology / eds. L. S. Smith, A. Hamilton. Amsrerdam: WorldScientific, 1998. P. 21–32.

http://www.cis.tugraz.at/igi/maass/psfiles/htc-ewns1.ps.gz


Marian I., Reilly R.G., Mackey D. Efficient event-driven simulation of spiking neural networks // Proceedings of 3rd WSES International Conference on Neural Networks and Applications. Interlaken, Switzerland, February 2002.

http://cortex.cs.nuim.ie/papers/IM_RR_DM_EventDrivenSim.pdf


Mattia M., Del Giudice P. Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Comp. 2000. Vol. 12. P. 2305–2329.

http://neural.iss.infn.it/Papers/asyncsimu.pdf


McClelland J., McNaughton B., O’Reilly R. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review. 1995. Vol. 102. P. 419–457.

http://www.cnbc.cmu.edu/~jlm/papers/McCMcNaughtonOReilly95.pdf


McCloskey M., Cohen N. Catastrophic interference in connectionist networks: The sequential learning problem. The Psychology of Learning and Motivation. 1989. Vol. 24. P. 109–165.
Morita M. Associative memory with nonmonotone dynamics. Neural Networks. 1993. Vol. 6. P. 115–126

http://volga.esys.tsukuba.ac.jp/~mor/paper/.


Morita M. Smooth recollection of a pattern sequence by nonmonotone analog neural networks // Proceedings of the IEEE International Conference on Neural Networks, Orlando, 1994. Vol. 2. P. 1032–1037.

Мorita M. Memory and Learning of Sequential Patterns by Nonmonotone Neural Networks. Neural Networks. 1996. Vol. 9, Issue 8. P. 1477–1489.

http://volga.esys.tsukuba.ac.jp/~mor/paper/mor1996a.pdf


Morita M. Computational study on the neural mechanism of sequential pattern memory. Cognitive Brain Research. 1996. Vol. 5. P. 137–146.

http://volga.esys.tsukuba.ac.jp/~mor/paper/mor1996b.pdf


Morita M., Murata K., Morokami S. Context-dependent sequential recall by a trajectory attractor network with selective desensitization // Proceedings of the Third International Conference on Neural Networks and Artificial Intelligence, Minsk. 2003. P. 235–238.

http://volga.esys.tsukuba.ac.jp/~mor/paper/ICNNAI2003.pdf


O'Reilly R.C. Biologically Plausible Error-driven Learning using Local Activation Differences: The Generalized Recirculation Algorithm. Neural Computation. 1996. Vol. 8. P. 895–938.

http://psych.colorado.edu/~oreilly/papers/OReilly96_generec_nc.pdf


O'Reilly R.C. Six Principles for Biologically-Based Computational Models of Cortical Cognition. Trends in Cognitive Sciences. 1998. Vol. 2. P. 455–462.

http://psych.colorado.edu/~oreilly/papers/OReilly98_6princip_tics.pdf


O'Reilly R.C. , Frank M.J. Making Working Memory Work: A Computational Model of Learning in the Frontal Cortex and Basal Ganglia. Neural Computation. 2006. Vol. 18. P. 283–328.

http://www.u.arizona.edu/~mfrank/papers/OReillyFrank06.pdf


O'Reilly R.C., Munakata Y.. Computational Neuroscience and Cognitive Modeling // Encyclopedia of Cognitive Sciences / ed. L. Nadel. London: Macmillan, 2003.

http://psych.colorado.edu/~oreilly/papers/OReillyMunakata01_ecs_encyc.pdf


Perrett D. I., Rolls E. T., Caan W. C. Visual neurons responsive to faces in the monkey temporal cortex. Experimental Brain Research. 1982. Vol. 47. P. 329–342.
Ratcliff R. Connectionist models of recognition memory: Constraints imposed by learning and forgetting functions. Psychological Review. 1990. Vol. 97. P. 285–308.
Robins A. Catastrophic forgetting, rehearsal, and pseudorehearsal. Connection Science. 1995. Vol. 7. P. 123–146.
Robins A. Consolidation in neural networks and in the sleeping brain. Connection Science. 1996. Vol. 8. P. 259–275.
Robins A., McCallum S. Pseudorehearsal and the catastrophic forgetting solution in Hopfield type networks. Connection Science. 1998. Vol. 10. P. 121–135.
Rolls E. T., Tovee M. J. Processing speed in the cerebral cortex and the neurophysiology of visual backward masking. Proc. Roy. Soc. В. 1994. Vol. 257. P. 9–15.
Rumelhart D.E., Hinton G.E., Williams R.G. Learning representation by back-propagating error. Nature. 1986. Vol. 323, Issue 6088. P. 533–536.
Ruppin E. Evolutionary embodied agents: A neuroscience perspective. Nature Reviews Neuroscience. 2002. Vol. 3. P. 132–142.

http://www.cs.tau.ac.il/~ruppin/npaperlO.ps. gz.


Senn W., Schneider M., Ruf B. Activity-dependent development of axonal and dendritic delays or, why synaptic transmission should be unreliable. Neural Comput. 2002. Vol. 14, Issue 3, 583-619.

http://www.cns.unibe.ch/publications/ftp/paper_DelayNECO.pdf.


Sommer F. T., Wennekers T. Associative memory in networks of spiking neurons. Neural Networks. 2000. Vol. 14. P. 825–834.

http://citeseer.nj.nec.com/sommer01associative.html.


Sompolinsky H., Kanter I. Temporal association in asymmetric neural networks. Phys. Rev. Lett., 1986. Vol. 57. P. 2861–2864.
Stickgold R. Sleep: off-line memory reprocessing. Trends in Cognitive Sciences. 1999. Vol. 2, Issue 12. P. 484–492.

Suemitsu A., Morita M. A model of memory formation in the pair-association task // Proceedings of the 2000 International Conference on Neural Information Processing, Taejon. 2000. Vol. 2. P. 915–919.

http://volga.esys.tsukuba.ac.jp/~mor/paper/ICONIP2000.pdf


Sutherland G., McNaughton B. Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Current Opinions in Neurobiology. 2000. Vol. 10. P. 180–186.
Thorpe S. T., Imbert M. Biological constraints on connectionist modelling // Connectionism in Perspective / eds. R. Pfeifer, Z. Schreter, F. Fogelman-Soulie, and L. Steels. North-Holland: Elsevier, 1989.
Williams R.J., Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1989. Vol. 1. P. 270–280.

http://citeseer.ist.psu.edu/williams89learning.html.


Yoshizawa S., Morita M., Amari S. Capacity of associative memory using a nonmonotonic neuron model. Neural Networks. 1993. Vol. 6. P. 167–176.

http://volga.esys.tsukuba.ac.jp/~mor/paper/yoshi1993.html

* Терехин Анатолий Тимофеевич. Доктор биологических наук, профессор кафедры общей экологии биологического факультета МГУ, Московский государственный университет им. М.В.Ломоносова, Ленинские горы 1, стр. 12, 119991 Москва, Россия.

Е-mail: terekhin_a@mail.ru


** Будилова Елена Вениаминовна. Кандидат техническихнаук, ст. научн. сотр. кафедры общей экологии биологического факультета МГУ, Московский государственный университет им. М.В.Ломоносова, Ленинские горы 1, стр. 12, 119991 Москва, Россия.

Е-mail: evbudilova@mail.ru


*** Качалова Лариса Андреевна. Кандидат биологических наук, директор Института когнитивной нейрологии СГА, Современная гуманитарная академия, Нижегородская 32, 109029 Москва, Россия.

Е-mail: lefi@muh.ru


**** Карпенко Михаил Петрович. Доктор техн. наук, профессор, президент Современной гуманитарной академии, Современная гуманитарнаяй академия, Нижегородская 32, 109029 Москва, Россия.

Е-mail: rectorat@muh.ru

Поделитесь с Вашими друзьями:
1   2   3   4




База данных защищена авторским правом ©vossta.ru 2022
обратиться к администрации

    Главная страница