Дипломная работа получение 2-метилпропена дегидратацией



страница1/4
Дата31.12.2017
Размер0.66 Mb.
#6095
ТипДипломная работа
  1   2   3   4



Дипломная работа

ПОЛУЧЕНИЕ 2-МЕТИЛПРОПЕНА ДЕГИДРАТАЦИЕЙ

,2-ДИМЕТИЛЭТАНОЛА-1

Аннотация
В работе рассмотрен метод получения 2-метилпропена (дальше изобутилена) дегидратацией 2,2-диметилэтанола-1 (дальше третбутилового спирта). Представлен обзор возможных методов получения изобутилена. Проведен анализ основной реакции (рассмотрены физические и химические свойства реагентов, их электронная структура). В работе разобрана кинетика и механизм реакции.

Особое внимание уделено термодинамическому расчету и выбору типа реактора. Приведены расчеты материального и теплового баланса. Представлена операторная модель химико-технологической системы.

Работа содержит ХХ страниц, 8 рисунков, 5 таблиц, 48 литературных ссылок.

Содержание
Введение

. Литературный обзор

.1 Методы получения целевого продукта

.1.1 Получение изобутилена дегидрированием изобутана

.1.2 Получение изобутилена дегидрированием бутановой фракции с последующей изомеризации

.1.3 Методы извлечения изобутилена из углеводородной фракции С4



1.1.4 Получение изобутилена из втор-бутил хлорида

.1.5 Получение изобутилена из трет-бутил хлорида

.1.6 Получение изобутилена из трет-бутилмеркаптана

.1.7 Получение изобутилена из диизобутилена

.1.8 Получение изобутилена из триизобутилена

.1.9 Получение изобутилена из втор-и-н-бутанолов

.1.10 Получение изобутилена из изобутанола

.1.11 Получение изобутилена из трет-бутилового спирта

.1.12 Другие методы получение изобутилена

.2 Анализ основной реакции

.2.1 Физические свойства реагентов и продуктов реакции

.2.2 Электронная структура реагентов и продуктов реакции

.2.3 Химические свойства реагентов и продуктов реакции

. Термодинамический анализ основной реакции

.1 Подготовка исходной информации

.2 Расчет термодинамических функций

. Кинетика и механизм реакции получения изобутилена

.1 Механизм реакции и его обоснование

.2 Анализ факторов, влияющих на основную реакцию

.2.1 Влияние строения субстрата

.2.2 Влияние строения атакующей частицы

.2.3 Влияние строения уходящей группы

.2.4 Влияние растворителя

.3 Катализ основной реакции

.4 Кинетическая модель реакции

. Выбор типа реактора

.Расчет реактора

.1 Материальный баланс

.2 Тепловой баланс

.3 Расчет объема реактора

. Операторная модель химико-технологической системы

Вывод


Список литературы

Введение
Изобутилен является важнейшим и достаточно многотонажным мономером алифатического ряда.

Впервые он был выделен из продуктов высокотемпературного разложения животных жиров и описан Фарадеем в 1825 году.

Чистый изобутилен получен Бутлеровым в 1868 году по реакции дегидратации трет-бутилового спирта разбавленной серной кислотой

При вдыхании изобутилен оказывает наркотическое действие [1]. Интенсивность токсикологического действия зависит от концентрации мономера и индивидуальных особенностей организма. Признаки отравления: расстройство желудка, головная боль и тошнота. На более поздней стадии наблюдается расстройство зрения и потеря сознания. Длительное пребывание в загазованном помещении может привести к смертельному исходу.

При хранении и работе с изобутиленом необходимо соблюдать правила техники безопасности, общие для всех горючих веществ.

На сегодняшний день на основе изобутилена получают синтетические каучуки: изопреновый, полиизобутеленовый, пластмассы, топливо, смазки, присадки к маслам, поверхностноактивные вещества, разнообразные добавки и другие продукты, которые используются практически во всех отраслях народного хозяйства. На волжском заводе ОАО ”КАУЧУК” используют изобутилен для производства метил третбутилового эфира - высокооктановой добавки к бензину, а также изделий из пластмассы.

Исходя из вышесказанного, следует, что потребность в изобутилене постоянно растет.

Многие аспекты химии и технологии изобутилена и продуктов на его основе не ясны и, в лучшем случае, дискуссионные. Поэтому глубокий интерес к фундаментальным и перспективным исследования изобутилена поддерживается уже много десятилетий и постоянно стимулируется новыми экспериментальными данными.

Таким образом, проблема получения изобутилена актуальна и на сегодняшний день, при этом, достаточно хорошо разработана в научной литературе.

Целью данной работы является формирование химической концепции процесса дегидратации трет-бутилового спирта, как метода получения изобутилена.

Для реализации вышеуказанной цели необходимо решить следующие задачи:

. Выполнить теоретический анализ предложенного метода, рассмотреть особенности химической реакции, термодинамики, кинетики и механизма изучаемой реакции.

. Сделать выбор типа реактора, осуществить расчеты теплового и материального балансов, объема реактора и поверхности теплообмена.

. Предложить операторную схему получения изобутилена.



1. Литературный обзор
.1 Методы получения целевого продукта
Процессы получения изобутилена можно разделить на две большие группы: специализированные процессы с максимальным выходом изобутилена или фракции углеводородов С4 и процессы, в которых они являются побочными продуктами.

Первая группа включает: 1) высокотемпературный пиролиз жидкого и газообразного сырья - сухие газы переработки нефти, попутные газы нефтедобычи, этан, пропан, бутаны, прямогонные и газовые бензины, в отдельных случаях рафинаты каталитического риформинга (после извлечения ароматических углеводородов), газойлевые фракции, нефть и нефтяные остатки; 2) термический крекинг высокомолекулярных парафинов, полученных при переработке нефти; Эти два метода сопровождаются побочными нежелательными реакциями деструкции образовавшихся олефинов, их гидрирование и дегидрирование. 3) селективную полимеризацию или деполимеризацию полимеров олефинов; 4) каталитическое дегидрирование парафинов (бутаны, пентаны, нормальные парафины); 5) дегидратацию спиртов; 6) реакции изомеризации и т.д.[1].

Рассмотрим более подробно некоторые из этих методов.
1.1.1 Получение изобутилена дегидрированием изобутана (И)

Данный процесс протекает по реакции:


(CH3 )3 ─CH (CH3 )2C=СH2 + H2
Для протекания реакции дегидрирования оптимальна температура 550- 600 °С [2]. Повышение температуры вызывает нежелательные реакции крекинга. С повышением давления глубина дегидрирования изобутана в изобутилен заметно уменьшается. Наиболее подходящими катализаторами являются алюмохромовые соединения. В промышленности выход изобутилена в реакторах секционного типа с псевдоожиженным слоем катализатора составляют не менее 42 масс.% на пропущенный и 82 масс.% на разложенный изобутан [1]. Запатентован метод дегидратации изобутана в присутствии азота [3].
1.1.2 Дегидрирование бутановой фракции с последующей изомеризацией в изобутилен

Процесс протекает по следующей схеме


CH3─ CH2 ─CH=CH2 бутилен

н CH3─ CH2 ─CH2─CH3 CH3─ CH=CH─CH3 транс-бутилен

CH3─ CH=CH─CH3 цис-бутиле
Примерный состав продуктов реакции дегидрирования н-бутилена следующий: 34 масс.% н-бутилена, 38 масс% транс-изомера и 28 масс.% цис-изомера [2].

В качестве катализатора используют оксид хрома на оксиде алюминия. Температура процесса 497-502 0С [2]. Изомеризация a,b-бутиленов в изобутилен проходит при 302-542 0С. В качестве катализатора применяют Н3РО4 на силикагеле, кремнеземе или шамоте; А12О3 и другие [4].

Изучением этой реакции занимались Херд, Голберт, Тропш, Перриш и Этлор [4]. Тропш пришел к выводу, что изомеризация требует затраты энергии в количестве 58102 кДж. Это подтвердилось работами Форста, Ридковского и Серябряковского [4].

Токиямо Йосихиро [5] изучил процесс дегидрирования бутана и последующей изомеризацию a-бутена в изобутилен при 5000С; в качестве катализатора применялась платина нанесенная на силикаты железа. Бекхет [6] изучил изомеризацию н-бутена в изобутилен на кремнийалюминиевых катализаторах.

Чен Хонг-во [7] установил, что селективность изомеризации возрастает при введении ZSM-23, в качестве катализатора к ферритному углеводороду на микропористой структуре. Для увеличения селективности Пеллет Ригис [8] использовал в качестве катализатора цеолиты при температуре 360-650 0С.

В промышленности Хорев и Морозов [9] запатентовали метод изомеризации н-бутана при температуре 160-200 0С на катализаторах состава: Cu2O3 40-50 масс%, Ni2O3 25-40 масс.%, Fe2O3 0.2 масс.%, остальное SiO2.

По данным Саматкина и Киямовой [10] в декабре 1995 года в России в ОАО НИХХ введено в эксплуатацию производство изобутилена изомеризацией н-бутиленов. В качестве катализатора используется А12О3 при температуре не выше 5400С. Производительность установки 8-16 т/ч.

При изомеризации углеводородов фракции С4 с последующим дегидрированием в изобутилен, изомеризация бутановой фракции проводится на катализаторах А1Сl3, А1Вг3, ВР3, НС1 и т.п. Дегидрирование изобутана на хромалюминийоксидных катализаторах проводится по непрерывной схеме при температуре 537-6020С [2].

Выход изобутилена при 50% конверсии достигает 42% при селективности 82% (в пересчете на изобутилен) [1].

Мирзабекова и Мамедов [11] заявили метод конверсии изобутилена при 610-6800С в присутствии СО2 на катализаторах, содержащих: 2-6 масс.% Сr, 2-6 масс.% Mn закрепленных на А12О3.

В результате реакции дегидратации получают бутан-изобутиленовую фракцию углеводородов из которой сначала извлекают бутадиен, а потом изобутилен.
1.1.3 Метод извлечения изобутилена из фракции С4.

Гютенборг [12] выделял два основных метода извлечения: а) физический, включающий в себя абсорбцию, экстракционную и азеотропную дистилляцию, а также ректификацию; б) химический основанный на взаимодействии изобутилена с различными органическими веществами. В качестве физических методов большинство фирм используют метод жидкой абсорбции. Абсорбентом может быть керосиновая фракция. При этом исходный газ может содержать: 21,2% СН4, 12,1% С3Н8, 47,5% н-С4Н10 и 19,1% изобутилена. Абсорбент движется частично противотоком, частично прямотоком по отношению к газу. Изобутилен абсорбируется практически нацело [4].

Поскольку компоненты фракции С4. имеют весьма близкие температуры кипения, то добавление соответствующих агентов, уменьшает упругость паров различных углеводородов и увеличивает их летучесть, улучшает фракционную разгонку смеси. Если добавленный агент находится в остатке, то такой процесс называется экстрактивной дистилляцией. Если же агент уходит с дистиллятным паром, то это азеотропная дистилляция. Ректификация обычно служит для предварительной очистки изобутилен-изобутановой фракции.

В химических методах извлечения изобутилена из фракции С4 наиболее часто применяются:

а) сернокислый метод. Этот метод основан на исследованиях А.М. Бутлерова, который еще в 1873 году показал, что в результате взаимодействия разбавленной Н2SO4 (при концентрации 55-65 % и температуре -13-42 0С) [1] с изобутиленом образуется бутилсерная кислота по реакции:
(CH3)2C=CH2 + Н2SO4  (CH3)3C-ОSO3H
При этом протекают реакции олигомеризации (преимущественно ди - и триизобутиленов), но потеря изобутана при этом невелика.

Изобутилсерная кислота при разбавлении водой гидролизуется с образованием трет-бутилового спирта:


(CH3)3C-ОSO3H → (CH3 )3CОН + Н2SO4
Рядом исследований было показано, что чем выше концентрация кислоты (в пределах от 45 до 70%), тем больше возможность поглощения (кроме изобутилена) других углеводородов; чем ниже концентрация кислоты, тем медленнее идет этот процесс [1]. Температура также оказывает большое влияние на взаимодействие углеводородов с серной кислотой: повышение температуры способствует развитию процессов полимеризации. Извлечение изобутилена лучше проводить при температурах 10-30 °С.

Изобутилен абсорбируется 65%-ной серной кислотой на холоду почти количественно. При низких температурах (от -10 до + 10 °С) потери изобутилена в результате полимеризации невелики. При работе с концентрированной кислотой необходимо сильно охлаждать реакционную смесь, так как в противном случае легко образуются полимеры. Кроме того, в реакцию с концентрированной кислотой вступают и другие ненасыщенные углеводороды.

Реакция между серной кислотой и углеводородами С4 идет в тонком слое на поверхности кислоты. Поэтому для успешного поглощения изобутилена серной кислотой необходимо интенсивное перемешивание реагирующих веществ [13].

б) извлечение изобутилена из фракции С4 с использованием ионообменных полимеров (сульфинированные сополимеры с дивинилом типа КУ-2 и др.)

Так же, как и в сернокислом способе, включает гидратацию изобутилена в трет-бутилового спирта и последующую дегидратацию спирта в олефин [12]. Особенностью метода является отсутствие высокоагрессивных коррозионных сред, возможность многократного использования катализаторов и высокая (99,95 масс.%) чистота получаемого изобутилена [1]. Клименко, Верховная, Менилло [12] изучали эффективность большинства отечественных катализаторов. Наиболее активным оказался КУ-2.

В промышленности реализован метод извлечения изобутилена из фракции С4 взаимодействием трет-олефина со спиртом на ионных катализаторах макропористой структуры Амберлис-25, а также SiO2∙А12О3 или активированного угля с помощью разложения трет-бутилового эфира при температуре 37-202 °С.[1]


(CH3 )2C=CH2 + CH3ОН катионит (CH3 )2C+О СН3

(CH3 )2CОСН3 катионит (CH3 )2C=CH2 + Н2O


К.Г. Шароноав и А.М Рожков [14] выделили изобутилен пиролизом или каталитическим воздействием спиртов за счет реакции изобутилена с изобутаном с последующим разложением эфира. Ими же заявлен способ выделения изобутилена при температуре 90─115 °С и давлении 0,1─0,2 мПа в присутствии кислотного крупно пористого ионита [15]. С.Ю. Павловым и И.П. Карповым [16] запатентован метод получения изобутилена из метил-трет-бутилового эфира в присутствии гетерогенных катализаторов, температуре 45─80 °С и давлении 1─3 ата.

Л.С.Кофман выделял изобутилен с помощью СаО при температуре 0─80 °С [2]. В.Н. Забористовым и Р.М.Яруллиной запатентован метод выделения изобутилена на анионообменных смолах типа [N(CH3)3]+OH, =NН, при температуре 18─30°С [17].

В промышленности используется метод, основанный на обработке фракции С4 раствором CH3Cl и HCl c последующей дегидратацией трет-бутилового спирта [12].

Далиным и Письманом [18] запатентован метод выделения изобутилена из фракции С4 при температуре 190─200 °С и давлении 4─6 атм. В качестве катализатора использовался g-А12О3. В США запатентован метод выделения изобутилена из фракции С4 на катализаторах РbО3, нанесенных на А12О3 [19].


1.1.4 Метод получения изобутилена из вторичного бутилхлорида

Процесс протекает по следующей реакции:


CH3─ CHCl ─CH2─CH3 → (CH3 )2C=CH2 + НCl
Для получения изобутилена из вторичного бутилхлорида необходимо, чтобы отщепление хлористого водорода сопровождалось изомеризацией углеводородного скелета. Жессю [4] обрабатывал н-бутилены хлористым водородом, получая вторичный бутилхлорид. Последний пропускался при 300-500°С над металлхлоридными катализаторами типа А1С13 или ВеС12. В полученном газе содержался изобутилен, который Жессю поглощал 60%-ной серной кислотой.
1.1.5 Метод получения изобутилена из третичного бутилхлорида

Процесс протекает по следующей реакции:


(CH3 )3ССl → (CH3 )2C=CH2 + НCl
Нефт [4] получил изобутилен, пропуская бутилхлорид через слой пемзы нагретой до температуры 400-500°С. Если пемзу заменить Са(ОН)2, то отходящие газы будут содержать только изобутилен. В одном из немецких патентов [4] предложено получать изобутилен из третичного бутилхлорида, либо путем каталитического отщепления НCl, либо путем омыления алкилхлорида водой с дегидратацией образовавшегося трет-бутанола.

Согласно другим источникам, возможно провести данные реакции при температуре не более 260°С в присутствии инертного углерода. В США [4] запатентован метод, в котором реактор-колонна заполняется алифатической маслянистой фракцией. Колонна работает при температуре верха 54,4°С и температуре низа 260°С. Образующийся НCl отводят сверху в виде паров, а изобутилен отгоняют из смеси с маслом дистилляцией.


1.1.6 Метод получения изобутилена из третичного бутилмеркаптана

Метод основан на реакции:


(CH3 )3СSH → (CH3 )2C=CH2 + Н2S
В США третичный бутилмеркаптан разогревают до 100°С или 230-400°С и пропускают через пустотелый или заполненный катализатором реактор. В качестве катализатора используют Н2SO4 или Н3РO4. Время контакта колеблется от нескольких секунд до многих минут. Продукты разложения промывают трикалийфосфатом для удаления Н2S. Затем промывают NaOH, чтобы удалить непрореагировавший меркаптан [4].
1.1.7 Метод получения изобутилена из диизобутилена

Метод основан на реакции:


(CH3 )3С-CH2-С(CH3)=CH2 → 2(CH3 )2─CH=CH2
Деполимеризацию ведут при температурах 175-370 °С над активным глиноземом, над фосфорной кислотой на носителе кизельгуре.

При соответствующем выборе температуры можно осуществлять такой процесс, при котором над катализатором пропускается смесь низкомолекулярных полимеризатов моно- и диолефинов, а деполимеризации селективно подвергаются только те углеводороды, которые при расщеплении образуют изобутилен. Именно такой процесс был запатентован в США группой исследователей [1]. В качестве катализаторов они используют фуллерову землю, активированный бентонит или окись алюминия, а также фосфорную кислоту в чистом виде или на носителях. При пропускании над этими катализаторами при 315-425 °С смеси, содержащей низкомолекулярные полимеры изобутилена, нормального бутилена и дивинила, а также низкомолекулярные сополимеры изобутиленов, н-бутиленов и дивинила, расщепляется только полимер изобутилена при определенной объемной скорости. При деполимеризации диизобутилена активность катализатора зачастую очень быстро падает, так как на его поверхности отлагается кокс. В одном из патентов [4] поэтому рекомендуется работать с поверхностно-активным алюмосиликатным катализатором, крекирующая способность которого уменьшена за счет обработки паром при 690° С.

В США также запатентован процесс деполимеризации диизобутилена в псевдоожиженном слое катализатора, причем этот процесс протекает в особенно мягких условиях [4]. Катализатором служит синтетический гель SiO2 - А12О3, содержащий 12 масс.% А12О3. Сырье, диизобутилен, подается в реактор на уровне кипящего слоя. При температуре 525 °С и скорости газа 0,5-2 -м/с диизобутилен деполимеризуется в изобутилен.

В промышленности для деполимеризации используется активный глинозем над Н3РO4 при температуре 179-370 °С [4]. По данным Усенко и Гусейнова [20] цеолиты, содержащие каолин и бетаин дают высокий выход изобутилена. В патенте Гусейнова и Муханглинского [21] в присутствии СО2 и О2 на цеолитах NaX, NaX-3X, NaX-3Y при температуре 250-400 °С получается высококонцентрированный изобутилен.


1.1.8 Метод получения изобутилена из триизобутилена

Процесс описывается реакцией:


С12 Н24 → 3(CH3 )2C=CH2

изобутилен реагент реакция дегидратация

Деполимеризация триизобутилена, по всей вероятности, идет через промежуточную стадию диизобутилена. За это говорят наблюдения Лебедева и Коблянского [4], которые над флоридином как катализатором получили диизобутилен и изобутилен. Это наблюдение подтверждается количественными исследованиями Лебедева и Лившица [4], которые обнаружили в продуктах реакции, проведенной при 180-190 °С, 27,1% изобутилена и 65,6% диизобутилена [4]. Оболенцев в качестве катализаторов использовал алюмосиликаты при температурах 200, 300, 367 °С. Гринсфольд и Воуг расщепили триизобутилен при температуре 350 °С над SiO2-─ZrO2-─ А12О3 с очень большим выходом. Для промышленного процесса справедливо все, что говорилось о процессе деполимеризации диизобутилена. Запатентован [1] процесс термической (при температуре 230-260 °С ) и каталитической (при 205-230 °С, катализатор - флоридская земля и глинозем ) деполимеризации.

Также применяется термоокислительная деструкция полиизобутиленов, запатентованная Сангаловым и Минскером [22]. Процесс проходит при 200-400° С на катализаторах строения Ме+ (R Al Hal3 ).


1.1.9 Метод получения изобутилена из втор- и н-бутиловых спиртов

Процесс протекает по следующей схеме:


CH3 -CH2-CH2-CH2ОН → (CH3 )2C=CH2 + Н2O
Сандеран, используя в качестве катализатора А1РО4, получил из первичного н-бутилового спирта при 300 °С 27 % изобутилена [4].

Из вторичного бутилового спирта изобутилен получал Ипатьев. Он пропускал при 450 °С через медную трубку, заполненную ZnCl2, вторичный бутиловый спирт, получая при этом газ с высоким содержанием изобутилена [1].

Согласно одному из патентов [4], н-бутиловый спирт при температурах порядка 250- 320 °С пропускается в паровой фазе над катализаторами из глинозема и оксида магния, кислой земли и (или) кизельгура. Образуется изобутилен в результате дегидратационной изомеризации. По другому патенту процесс проводится по такой же схеме, причем катализатором, над которым пропускается парообразный спирт, служит бетонит, к которому может быть добавлен глинозем.
1.1.10 Метод получения изобутилена из изобутанола

Процесс протекает по следующей схеме:


(CH3 )2CН− CH2 −ОН → (CH3 )2C=CH2 + Н2O
Будучи связана с разрывом одной связи С-Н и одной связи С-ОН, эта реакция эндотермическая и протекает с приемлемыми выходами только при повышенных температурах.

Отщепление воды от изобутанола может осуществляться как мокрым, так и сухим путем, т.е. либо в водном растворе, либо в безводной среде, чаще всего в паровой фазе [4]:

1). Отщепление воды от изобутанола мокрым путем.

Наилучшим реагентом для этой цели является серная кислота. При подогреве изобутилового спирта с 3-4 масс.% серной кислоты при 140-150 °С начинает бурно выделяться изобутилен [2]. При добавлении сульфата алюминия реакция начинает идти достаточно интенсивно и при более низкой температуре порядка 120-125 °С [1]. Коновалов [4] нагревал изобутанол, серную кислоту, воду и известь (в соотношении 1:1:0,25:0,05) до равномерного газообразования. При этом был получен газ, состоявший на 2/3 из изобутилена и на 1/3 из н-бутиленов.

Лермонтов применил, при том же соотношении компонентов, стеклянный порошок вместо извести, а Хелль и Ротберг - кварцевый песок [4].

). Отщепление воды от изобутанола сухим путем. Для отщепления воды от изобутанола сухим путем ле Бель и Грин использовали в качестве катализатора хлорид цинка, расплавляя его в бутыли, после чего в эту бутыль вливали по капле изобутиловый спирт [1]. Фаворский и Дебу усовершенствовали этот метод, вводя изобутанол под поверхность расплавленного хлорида цинка [1]. Нэфт использовал в качестве катализатора пятиокись фосфора на пемзе и получил при 430-480 °С 72% изобутилена и 28% н-бутиленов [4]. Мэль и Де Годон дегидратировали изобутанол при 185-190 °С над обезвоженными квасцами [4].

Современные процессы получения изобутилена каталитической дегидратацей изобутанола основаны на работах Ипатьева, который проводил свои опыты при 500-600 °С в обогреваемых трубках, наполненных хлоридом цинка или осколками битых графитовых тиглей [4]. Сабатье получал изобутилен из изобутилового спирта при 300-340 °С. В качестве катализаторов он использовал группу дегидратирующих окислов, синюю вольфрамовую бронзу (М2О-W2О5 ХWО3), ториевую землю (ТhО2) и окись алюминия.

В работах Андрианова и Андреева [4] окись алюминия также служила катализатором при получении радиоактивного изобутилена.

Множество работ посвящено выбору носителей для катализатора. Рид и Присли [4] использовали пемзу в качестве носителя для окиси алюминия и дегидратировали спирт при 450-475 °С. Коффин и Маас работали с глиноземом, дегидратируя спирт при 250-300 °С [1]. Слисаренко и Чен [4] при 450 °С получили из изобутанола над природными саратовскими глинами изобутилен чистоты 79 %.

Следует отметить, что данный способ сопровождается изомеризацией и полимеризацией, и это подтверждается в работах Ипатьева, Сабатье, Матиньон, Мурэ и Доде [1].

Известен способ получения изобутилена разложением изобутилового спирта в трубчатом реакторе. В качестве теплоносителя используются пары ртути [23].



Поделитесь с Вашими друзьями:
  1   2   3   4




База данных защищена авторским правом ©vossta.ru 2022
обратиться к администрации

    Главная страница