Газохимические методы и их применение для исследования свойств новых элементов и получения радионуклидов



страница1/4
Дата22.06.2019
Размер0.63 Mb.
ТипАвтореферат диссертации
  1   2   3   4



На правах рукописи

ЖУЙКОВ

Борис Леонидович
Газохимические методы и их применение для
исследования свойств новых элементов И
получения радионуклидов

Специальность 02.00.14 – Радиохимия


Автореферат диссертации


на соискание ученой степени

доктора химических наук

Москва - 2009
Работа выполнена в Лаборатории радиоизотопного комплекса Института ядерных исследований РАН и в Лаборатории ядерных реакций Объединенного института ядерных исследований
Официальные оппоненты: доктор химических наук

Бердоносов Сергей Серафимович

доктор химических наук, профессор

Бетенеков Николай Дмитриевич


доктор химических наук

Колотов Владимир Пантелеймонович

Ведущая организация: ФГУП НПО «Радиевый институт им.
В.Г. Хлопина»

Защита состоится « » __________ 2009 г. на заседании диссертационного совета Д 002.109.01 в Институте геохимии и аналитической химии


им. В.И. Вернадского РАН по адресу: 119991, Москва, ул. Косыгина, 19.
С диссертацией можно ознакомиться в библиотеке ГЕОХИ РАН (Москва, ул. Косыгина, 19).
Автореферат диссертации разослан « » _______________ 2009 г.

Ученый секретарь

диссертационного совета Д 002.109.01

доктор химических наук И.В. Кубракова



ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы

В последние десятилетия в радиохимии широко используют газохимические методы разделения элементов, основанные на их переходе из газовой в конденсированную фазу (в твердую или в жидкую). В частности, применяют изотермическую хроматографию, термохроматографию, т.е. разделение летучих соединений с использованием температурного градиента, и селективную возгонку компонентов из их смесей. В этих процессах используют различные газы-носители и, соответственно, различные летучие формы элементов: элементарное состояние, оксиды, хлориды, фториды, соединения с органическими веществами, подразумевая прежде всего механизм физической адсорбции.

Методы разделения элементов, связанные с химическими реакциями при переходе из газовой фазы в конденсированную, развиты в меньшей степени, хотя химическое взаимодействие с материалом колонки весьма существенно, особенно в радиохимии, где разделяемые вещества часто находятся в ультрамикроколичествах. Систематическое экспериментальное и теоретическое изучение этих процессов важно для решения различных задач, имеющих как фундаментальное, так и прикладное значение: исследование новых элементов, выделение изотопов в состоянии «без носителя» из мишеней, облученных на ускорителе, химическая переработка образцов с целью снижения предела обнаружения при активационном анализе.

Особый интерес представляет изучение химии новых элементов, получаемых на пучке тяжелых ионов, так как касается фундаментальных вопросов строения Периодической системы. Газохроматографические и термохроматографические исследования хлоридов, которые проводились И.И.Зварой и сотрудниками еще с 60-х годов прошлого века, сыграли большую роль в открытии элемента 104 – резерфордия (Rf) и экспериментальном обосновании его принадлежности к IV группе. Результаты этих исследований также имели важное значение для ядерной физики, так как они способствовали раскрытию новых закономерностей спонтанного деления ядер. В последнее время интерес к химии новых элементов еще более возрос в связи с идеей о так называемых «релятивистских эффектах» и предсказанием особенностей химического поведения тяжелых элементов. Релятивистские эффекты могут привести к изменению порядка заполнения электронных оболочек, что отразится на химических свойствах, в частности, резерфордия и хассия (элемента 108), и на р- и d-характере трансактиноидных элементов и их соединений.

Другое возможное направление использования газохимических и других высокотемпературных методов – химическое выделение радионуклидов из облученных мишеней, получаемых в ядерных реакциях на ускорителях. В некоторых случаях решение этой задачи требует особых подходов. Так, при получении радионуклидов на пучке протонов средних энергий (100-800 МэВ) радиохимическая переработка чрезвычайно сложна вследствие образования большого числа изотопов различных элементов, а также значительной массы мишени. Высокотемпературные методы разделения элементов перспективны для решения этих задач, в частности, при получении таких важных радионуклидов, как стронций-82 (используется как генератор короткоживущего рубидия-82 в позитронно-эмиссионной томографии), селен-72 (генератор мышьяка-72), кадмий-109 и др.

Получение и химическое выделение радионуклидов, синтезируемых на протонном пучке ускорителя, имеет не только прикладное значение, но также важно в решении фундаментальных вопросов ядерной физики, например, для изучения процесса образования в ядерных реакциях высокоспиновых ядерных изомеров.

Еще одно направление, которое также связано с методическим подходом, основанным на возгонке радионуклидов в элементарной форме и в виде оксидов, состоит в выделении ряда благородных и редких элементов из природных образцов сложного состава с целью их анализа.

В диссертацию включены работы, проведенные автором в Лаборатории радиоизотопного комплекса Института ядерных исследований РАН, а также работы, выполненные им ранее в Лаборатории ядерных реакций Объединенного института ядерных исследований.


Цель и задачи работы

Целью работы состояла в разработке основ газохимических методов разделения большой части элементов Периодической системы Д.И.Менделеева, а также в применении разработанных методов для решения различных фундаментальных и прикладных задач.

Задачи работы состояли в следующем:

1. Экспериментальное и теоретическое изучение закономерностей газовой термохроматографии и возможностей разделения элементов, в первую очередь, возгоняемых в элементарной или оксидной формах, с использованием химического взаимодействия разделяемых элементов на поверхности.

2. Определение летучести резерфордия, особенностей проявления его p- и d-характера, а также выяснение роли релятивистских эффектов.

3. Разработка высокоселективного, максимально экспрессного метода выделения из продуктов ядерных реакций летучего тетраоксида хассия и детектирования его α-распада и спонтанного деления.

4. Разработка методов и на их основе высокопроизводительной технологии получения медицинского радионуклида стронция-82 при облучении мишени металлического рубидия протонами на ускорителях средних энергий (порядка 100 МэВ), включая создание установки для облучения мишеней на пучке ускорителя, разработку конструкции мишени и радиохимической методики выделения стронция-82 в состоянии «без носителя» из материала мишени, а также создание генератора рубидия-82 для диагностики с применением позитронно-эмиссионной томографии.

5. Разработка методов получения радионуклидов селена-72 и кадмия-109, включающих облучение мишеней арсенида галлия и металлического индия на пучке протонов средних энергий, с последующим газохимическим выделением указанных радионуклидов из мишеней.

6. Исследование возможности получения на пучке протонов средних энергий медицинских радионуклидов: палладия-103, германия-68, олова-117м, меди-64 и др.

7. Установление с помощью радиохимических методов закономерностей образования ядерных изомеров на протонах средних энергий (500 МэВ и ниже).

8. Выявление возможностей концентрирования благородных металлов, возгоняемых в токе воздуха из природных образцов разного состава, с целью их активационного определения или промышленного извлечения благородных металлов.
Научная новизна

Разработаны методы газохимического разделения большого числа химических элементов, основанные на возгонке в токе водорода или кислорода (воздуха), применении твердых реагентов и «химических фильтров» при высокой температуре. Предложена теоретическая модель для предсказания температуры осаждения в термохроматографии ультрамикроколичеств веществ с учетом химических реакций на поверхности и модель для оценки энтальпии сублимации на основе квантово-химических расчетов.

Впервые охарактеризована летучесть резерфордия в восстановительной атмосфере. На основе экспериментальных и теоретических данных определена энтальпия сублимации Rf в элементарном состоянии, а также в виде тетрахлорида. Экспериментально установлено, что этот элемент по летучести ближе к Hf, чем к Pb. С привлечением теоретических квантово-химических расчетов продемонстрировано, что Rf – типичный d-элемент. Показана возможная роль релятивистских эффектов в химии резерфордия.

Разработан экспрессный метод химического выделения элемента хассия (Hs) как аналога осмия. Метод основан на использовании летучести хассия в виде тетраоксида и его химической очистке при высокой температуре, включая химическое взаимодействие с поверхностью в процессе осаждения. Метод обладает рекордным на сегодняшний день быстродействием (50 мс) при высокой химической селективности. Развитие этого метода и его применение для анализа продуктов ядерной реакции 248Cm + 26Mg привело к выделению и определению химических свойств хассия исследователями в Дармштадте (Германия). Сравнение экспериментальных и теоретических данных позволило предположить, что особенности химического поведения этого элемента можно объяснить наличием релятивистских эффектов.

С помощью различных, в том числе газохимических, методов исследованы закономерности образования ядерных изомеров в ядерных реакциях с ускоренными протонами в широком диапазоне энергий и ядерного спина. В результате предложена новая систематика изомерных отношений, выражающаяся в линейной зависимость логарифма изомерного отношения от перенесенного спина. Показано, что эта систематика носит универсальный характер.

Разработан метод выделения радиостронция из облученного жидкого металлического рубидия путем прямой сорбции на различных поверхностях. Исследована кинетика и температурная зависимость процесса, предложен механизм сорбции.

Изучен процесс газохимического выделения радиоизотопов селена из облученной протонами мишени арсенида галлия. Показано, что добавление твердого реагента – металлического железа - резко замедляет возгонку мышьяка, что позволяет получать чистый 72Se.

Исследованы процессы газохимического выделения 109Cd из мишени облученного металлического индия и термохроматографической доочистки кадмия.

С помощью имплантированных радионуклидов 188Pt и 188Ir изучено выделение благородных металлов возгонкой в токе воздуха из ряда природных образцов при высокой температуре, а также поглощение ряда элементов различными химическими фильтрами.
Практическая значимость

 В результате проведенных исследований разработаны технологии производства стронция-82 и других радионуклидов, получаемых на линейном ускорителе Института ядерных исследований РАН. Для этого создана установка на отводе пучка протонов с энергией 160 МэВ, которая является одной из крупнейших в мире и в настоящее время используется для регулярного производства радионуклидов, в основном, медицинского назначения. Стронций-82 производится совместно в России и США. На ускорителе ИЯИ РАН облучают протонами мишени металлического рубидия; а химическое выделение стронция-82 осуществляют параллельно различными методами в США и в России. Разработан российский медицинский генератор 82Sr/82Rb для позитронно-эмиссионной томографии, который прошел доклинические испытания. С использованием произведенного продукта продиагностировано более 100 тыс. пациентов.

 Разработан новый метод извлечения радиоизотопов стронция прямой сорбцией из металлического рубидия, перспективный для крупномасштабного непрерывного получения 82Sr из мишени циркулирующего рубидия. Показана возможность выделения радионуклидов из других жидких металлов, что важно для различных практических целей.

 Разработаны методы получения 72Se, 109Cd, 68Ge, 103Pd, 64Cu, 117mSn, которые пока используют в сравнительно небольших масштабах. Некоторые из этих радионуклидов в будущем могут иметь большое значение для медицины и техники. Ряд методов защищены российскими и зарубежными патентами.

 Предложен новый подход к концентрированию благородных металлов путем возгонки в токе воздуха с использованием твердых добавок и высокотемпературных химических фильтров. Этот путь перспективен для развития методов количественного определения благородных металлов в различных геологических образцах, а также для концентрирования ряда элементов из топочных газов, возникающих при сжигании углей.

 На основе полученных с использованием разработанных радиохимических методов данных предложена систематика изомерных отношений, позволяющая рассчитывать сечения и выходы изомерных радионуклидов в ядерных реакциях с протонами средних энергий.

 Результатом выполненных исследований химического поведения новых элементов (Rf и Hs) могут служить эффективные химические методики выделения этих элементов из продуктов ядерных реакций, что важно для решения проблем, связанных со строением атомного ядра.
На защиту выносятся:

 Теоретические и практические основы газохимического разделения элементов в токе водорода или кислорода, в том числе за счет эффекта химического взаимодействия с твердой фазой; модель для оценки энтальпии сублимации на основе квантово-химических расчетов.

 Результаты экспериментального и теоретического исследования газохимических свойств резерфордия, определение его энтальпии сублимации, p- или d-характера и возможного влияния релятивистских эффектов на его химические свойства.

Метод экспрессного газохимического выделения и изучения химических свойств хассия как аналога осмия.

 Методы радиохимического выделения 82Sr, 109Cd, 72Se и ряда других важнейших радионуклидов медицинского и технического назначения, производимых на созданной установке на пучке протонов с энергией 160 МэВ линейного ускорителя ИЯИ РАН.

 Результаты исследования сорбции радиоизотопов стронция из жидкого рубидия и разработанный на этой основе метод выделения 82Sr из облученных мишеней металлического рубидия.

 Новая систематика изомерных отношений в ядерных реакциях с протонами и методы выделения ряда изомерных радионуклидов из мишеней, облученных протонами.

 Методы газохимического выделения Pt, Ir, а также некоторых других благородных и редких элементов, из различных природных образцов путем возгонки в токе воздуха с использованием высокотемпературных химических фильтров для последующего определения.


Апробация работы

Основные результаты работы были доложены на ряде съездов, конференций, симпозиумов и школ: 2nd International Nuclear Chemistry Congress, Cancun, Mexico, 2008; XVIII Менделеевский съезд по общей и прикладной химии, Москва, 2007; Пятая российская конференция “Радиохимия-2006”, Дубна, 2006; 9th International Symposium on the Synthesis and Application of Isotopes and Isotopically Labeled Compounds, Edinburgh, UK, 2006; II Троицкая конференция «Медицинская физика и инновации в медицине», Троицк, Моск. обл., 2006; Научная конференция «Новые технологии в ядерной медицине», С-Петербург, 2006; 5th International Conference of Isotopes, Brussels, 2005; 8th Conference on Astroparticle, Particle and Space Physics, Detectors and Medical Physics Applications, Villa Erba, Como, Italy, 2003; 2003 International Conference on Nuclear Technology: Achieving Global Economic Growth while Safeguarding the Environment, New Orleans, 2003; 4th International Conference of Isotopes, Cape Town, South Africa, 2002; 7th International Conference Advanced Technology and Particle Physics, Villa Olmo Como, Italy, 2001; Конференция «Научные исследования в наукоградах Московской области», Протвино, 2001; RadiochemistryInternational Conference, Paris, 2000; 2000 International Chemical Congress of Pacific Basin Societies, Honolulu, Hawaii, 2000; 16th International Conference on Application of Accelerators in Research and Industry, Denton, Texas, 2000; 1st International Conference on Chemistry and Physics of Transactinide Elements, Seeheim, Germany, 1999; 19th World Conference INTDS, Oak Ridge, 1998; VII International Workshop on Target and Target Chemistry, Heidelberg, 1997; 4th International Conference on Nuclear and Radiochemistry, St.Malo, France, 1996; 6th Workshop on Targetry and Target Chemistry, Vancouver, Canada, 1995; International School-Seminar on Heavy Ion Physics, Dubna, 1993; Международный семинар по физике промежуточных энергий, Москва, 1989; Международная конференция «Актиниды-89», Ташкент, 1989; Совещание по экспериментам на пучках тяжелых ионов, Варна, Болгария, 1984; International Conference on Nuclear and Radiochemistry, Lindau, Germany, 1984; Международная школа-семинар по физике тяжелых ионов, Алушта, 1983.

Прочитано два цикла лекций в 1-м Миланском университете (2002 и 2005 гг.)
Публикации

Содержание работы отражено в 85 публикациях, включая 25 статей в научных журналах, статьи в специальных изданиях, препринты, материалы конференций и 8 патентов.


Вклад автора

В работах, выполненных в рамках представленной диссертации, вклад автора диссертации был определяющим. Он заключался в разработке теоретического и экспериментального подхода, анализе и обобщении полученных результатов. Экспериментальные работы выполнены им самим или под его непосредственным руководством. Работы, связанные с квантово-химическими расчетами, выполнены совместно с соавторами, где роль автора диссертации заключалась в постановке задачи и интерпретации полученных результатов.


Объем и структура диссертации

Диссертация состоит из введения, четырех глав, выводов и списка литературы. Объем диссертации 248 стр. текста, 309 библиографических ссылок, 127 рисунков, 46 таблиц.


С О Д Е Р Ж А Н И Е Р А Б О Т Ы
ЗАКОНОМЕРНОСТИ ГАЗОХИМИЧЕСКОГО РАЗДЕЛЕНИЯ С
ИСПОЛЬЗОВАНИЕМ ХИМИЧЕСКИ АКТИВНОЙ
СТАЦИОНАРНОЙ ФАЗЫ

Основные положения
В процессе газохимического разделения элементов необходимо создание условий, когда одни элементы остаются в нелетучей форме, а другие летучи и транспортируются током газа. Этого можно добиться, меняя температуру, состав газа-носителя и применяя различные стационарные фазы – твердые или жидкие, которые могут поглощать возогнанные вещества в результате химической реакции, или наоборот, способствовать возгонке элемента путем стабилизации летучей формы.

Комплексный подход к разделению большого числа элементов Периодической системы состоит в следующем:

а) Возгонка различных элементов из облученных мишеней и природных образцов в токе водорода и/или кислорода (воздуха). Последовательная комбинация газов-реагентов обеспечивает высокую селективность возгонки, так как летучесть элементов и оксидов меняется в широком диапазоне. В большинстве случаев имеется возможность легко перевести элементы в оксиды и затем восстановить их. Перевод в другую химическую форму более сложен в случае хлоридов, фторидов или органических соединений. В табл. 1 показано, какие элементы могут быть возогнаны в различных химических формах в токе кислорода или водорода при температуре около 11000С. Эта таблица составлена, в основном, по данным наших экспериментов.

б) К исходным образцам добавляют твердые вещества, обычно состоящие из различных нелетучих металлов, оксидов или хлоридов, реагирующих с компонентами исходного образца. Такие добавки позволяют увеличить выход возгонки за счет разрушения исходной кристаллической структуры образца и перевода того или иного элемента в летучую форму.

в) Возогнанные простые вещества или оксиды могут быть разделены в за счет химических реакций на поверхности при определенной температуре, например, путем пропускания возогнанных элементов или их оксидов через высокотемпературные “химические фильтры”, состоящие из различных нелетучих металлов (Au, Cu, Ti, Al, Fe) или оксидов (SiO2, CaO, MgO, Al2O3, TiO2, Mn2O3, Nb2O5). В табл. 1 представлены экспериментальные результаты, демонстрирующие использование фильтров из SiO2 и CaO.
Важное преимущество газохимического метода с использованием твердых реагентов и химических фильтров состоит в том, что во многих случаях он пригоден при использовании как макро-, так и микроколичеств веществ. Это особенно важно для радиохимии, где часто приходится иметь дело одновременно с разными количествами разделяемых элементов.
Таблица 1. Летучесть элементов в водороде и кислороде при температуре около 11000С и их поглощение фильтрами из SiO2 и CaO


Теоретический расчет температуры осаждения в термохроматографии
из термодинамических данных

Термохроматография – наиболее информативный метод исследования газохимических процессов. Интерпретировать результаты термохроматографических опытов и корректно предсказывать температуры осаждения для ультрамикроколичеств адсорбата сложнее, чем для макроколичеств, так как в случае ультрамикроколичеств адсорбата его взаимодействие с поверхностью более существенно.

В диссертации предложена модель расчета энтальпии адсорбции или температуры осаждения ультрамикроколичеств веществ в термохроматографии исходя из термодинамических данных. Модель базируется на некоторой аналогии процессов десорбциисублимации и десорбцииадсорбции, хотя они во многом принципиально отличаются. Предполагается, что энтропия десорбции Sd0 с поверхности вещества того же химического состава близка или коррелирует с энтропией десорбции с инертной поверхности. Данная модель применима в случае химических реакций на поверхности, когда десорбция происходит, например, лишь при соударении с молекулой реагента, находящейся в газовой фазе или адсорбированной на поверхности.

В результате оказывается, что энтропия десорбции может быть оценена следующим образом:

Sd0 = Ss0 + R ln(4106 r0 A/RT) = Ss0 + R ln(1,02·106 М2/32/3 Т 1) ,

где Ss0  энтропия сублимации; M – молекулярная масса адсорбированной формы;  –плотность адсорбированной формы, г/см3; r0 – радиус молекулы на поверхности (предполагая плотную упаковку), см; А – число Авогадро; R – универсальная газовая постоянная, эрг/моль∙К;
Т – температура, К.

Соответствующие энтальпии десорбции Hd0, определенные из термохроматографических данных с вычислением энтропии адсорбции по вышеизложенному методу, хорошо коррелируют с энтальпиями сублимации, причем эта корреляция справедлива для разных типов соединений. Это позволяет предсказывать температуру осаждения, исходя из термодинамических данных, и, наоборот, исходя из экспериментальной температуры осаждения, определять тип адсорбированного соединения.

В случае химической реакции, приводящей к десорбции вещества X с поверхности за счет взаимодействия с реагентом A

Xads + аА = Ygas + bВ

с некоторыми приближениями получаем следующее выражение для температуры осаждения:

Тa = Нrs0 / [R ln(3,7·106 M2/3 Q t g R [A]a / ([B]b 2/3 sHrs0)) + Srs0 ],

где Нrs0 и Srs0  соответственно, энтальпия и энтропия реакции сублимации на поверхности (эти значения можно рассчитать из термодинамических данных); Q  расход газа, см3/с; t – продолжительность процесса, с; g – температурный градиент, К/см; s – плотность поверхности колонки, см2/см.

Данный подход, хотя и является приближенным и не учитывает ряд факторов (например, неоднородность поверхности, на которой происходит адсорбция), количественно объясняет поведение ультрамикроколичеств веществ во многих термохроматографических экспериментах, проведенных нами и другими авторами с простыми веществами, оксидами, гидроксидами, галогенидами и оксигалогенидами элементов, и позволяет обоснованно интерпретировать результаты.

Расчет формы термохроматографического пика – более сложная задача. В разработанном нами приближенном рассмотрении использован кинетический подход. На основании дифференциального уравнения адсорбциидесорбции и ряда приближений выведено аналитическое выражение для формы пика, позволяющее понять некоторые закономерности процесса.



Поделитесь с Вашими друзьями:
  1   2   3   4


База данных защищена авторским правом ©vossta.ru 2019
обратиться к администрации

    Главная страница