Конспект лекций учебной дисциплины профессионального цикла вариативной части гос впо по направлению подготовки бакалавра



страница2/8
Дата09.08.2019
Размер2.82 Mb.
#127573
ТипКонспект
1   2   3   4   5   6   7   8

1.2 Метрология - наука об измерениях
Отраслью науки, изучающей измерения, является метрология.

Долгое время метрология оставалась в основном описательной наукой о различных мерах и соотношениях между ними. С конца прошлого века благодаря прогрессу физических наук метрология получила существенное развитие. Большую роль в становлении современной метрологии как одной из наук физического цикла сыграл Д. И. Менделеев, руководивший отечественной метрологией в период 1892 - 1907 гг. Одно из его высказываний:



Метрология в ее современном понимании - наука об измерениях, методах, средствах обеспечения их единства и способах достижения требуемой точности.

В настоящее время установлено следующее определение измерения: измерение есть нахождение значения физической величины опытным путем с помощью специальных технических средств.



Единство измерений - такое состояние измерений, при котором их результаты выражены в узаконенных единицах и погрешности измерений известны с заданной вероятностью. Единство измерений необходимо для того, чтобы можно было сопоставить результаты измерений, выполненных в разных местах, в разное время, с использованием разных методов и средств измерений.

Точность измерений характеризуется близостью их результатов к истинному значению измеряемой величины.

Истинным значением называют значение физической величины (ФВ), которое идеально отображает собственность объекта. Если значение ФВ определяется экспериментально, то такое значение будет считаться условно-истинным.

Физическая величина характеристика одного из свойств физического объекта (явления или процесса), общая в качественном отношений для многих физических объектов, но в количественном отношении индивидуальная для каждого объекта (т. е. значение физической величины может быть для одного объекта в определенное число раз больше или меньше, чем для другого). Например»: длина, время, сила электрического тока.

Таким образом, важнейшей задачей метрологии является усовершенствованием эталонов, передача значения единицы физической величины (ФВ) от эталонов к рабочим средствам измерения и контроля, разработка новых методов точных измерений и средств измерений, разработка систем единиц физических величин (ФВ) и их образование, обеспечение единства и необходимой точности измерений, оценка погрешности [22].



2. ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ И ИХ ЕДИНИЦЫ
2.1 Системы единиц физических величин
Понятие о физической величине - одно из наиболее общих в физике и метрологии. Под физической величиной понимается свойство, общее в качественном отношении для многих физических объектов (физических систем, их состояний и происходящих в них процессов), но в количественном отношении индивидуальное для каждого объекта. Так, все тела обладают массой и температурой, но для каждого из них эти параметры различны. То же самое можно сказать и о других величинах - электрическом токе, вязкости жидкостей или потоке излучения.

Для того чтобы можно было установить различия в количественном содержании свойств в каждом объекте, отображаемых физической величиной, вводится понятие размера физической величины.

Исторически первой системой единиц физических величин была принятая в 1791 г. Национальным собранием Франции метрическая система мер. Она не являлась еще системой единиц в современном понимании, а включала в себя единицы длин, площадей, объемов, вместимостей и веса, в основу которых были положены две единицы: метр и килограмм.

В 1832 г. немецкий математик К. Гаусс предложил методику построения системы единиц как совокупности основных и производных. Он построил систему единиц, в которой за основу были приняты три произвольные, независимые друг от друга единицы - длины, массы и времени. Все остальные единицы можно было определить с помощью этих трех. Такую систему единиц, связанных определенным образом с тремя основными, Гаусс назвал абсолютной системой. За основные единицы он принял миллиметр, миллиграмм и секунду.

В дальнейшем с развитием науки и техники появился ряд систем единиц физических величин, построенных по принципу, предложенному Гауссом, базирующихся на метрической системе мер, но отличающихся друг от друга основными единицами.

Рассмотрим главнейшие системы единиц физических величин [3].

Система СГС. Система единиц физических величин СГС, в которой основными единицами являются сантиметр как единица длины, грамм как единица массы и секунда как единица времени, была установлена в 1881 г.

Система МКГСС. Применение килограмма как единицы веса, а в последующем как единицы силы вообще, привело в конце XIX века к формированию системы единиц физических величин с тремя основными единицами: метр - единица длины, килограмм-сила - единица силы и секунда - единица времени.

Система МКСА. Основы этой системы были предложены в 1901 г. итальянским ученым Джорджи. Основными единицами системы МКСА являются метр, килограмм, секунда и ампер.
2.2 Относительные и логарифмические величины и единицы


  • науке и технике широко распространены относительные и логарифмические единицы измерения. Относительная величина представляет собой безразмерное отношение физической величины к одноименной физической величине, принимаемой за исходную.

Логарифмическая величина представляет собой логарифм (десятичный, натуральный или при основании 2) безразмерного отношения двух одноименных физических величин. Логарифмические величины применяют для выражения уровня звукового давления, усиления, ослабления, выражения частотного интервала и т.п.

Единицей логарифмической величины является бел (Б), определяемый соотношением

при , где - одноименные энергетические величины. В случае, если берется логарифмическая величина для отношения двух одноименных "силовых" величин (напряжения, силы тока, давления, напряженности поля и т.п.), бел определяется по формуле при . Дольной единицей от бела является децибел (дБ), равный 0,1 Б [22].

3. МЕЖДУНАРОДНАЯ СИСТЕМА ЕДИНИЦ (СИ)
3.1 Установление единой международной системы единиц
Наличие ряда систем единиц физических величин, а также значительного числа внесистемных единиц, неудобства, связанные с пересчетом при переходе от одной системы единиц к другой, требовало унификации единиц измерений. Рост научно-технических и экономических связей между разными странами обусловливал необходимость такой унификации в международном масштабе.

Требовалась единая система единиц физических величин, практически удобная и охватывающая различные области измерений. При этом она должна была сохранить принцип когерентности (равенство единице коэффициента пропорциональности в уравнениях связи между физическими величинами).



В 1954 г. Х Генеральная конференция по мерам и весам установила шесть основных единиц (метр, килограмм, секунда, ампер, кельвин и свеча) практической системы единиц. Система, основанная на утвержденных в 1954 г. шести основных единицах, была названа Международной системой единиц, сокращенно СИ (SI - начальные буквы французского наименования Systeme International). Был утвержден перечень шести основных, двух дополнительных и первый список двадцати семи производных единиц, а также приставки для образования кратных и дольных единиц.
3.2 Основные единицы СИ
Основные единицы СИ с указанием сокращенных обозначений русскими и латинскими буквами приведены в табл. 1.























Таблица 1




Величина




Единица




Сокращенное обозначение единицы













измерения




























русское




международное





























































Длина




метр




м




m








































Масса




килограмм




кг




kg








































Время




секунда




с




s








































Сила эл. тока




ампер




А




А








































Термодин. темп-ра




кельвин




К




К








































Сила света




кандела




кд




cd








































Кол-во вещества




моль




моль




mol




































Определения основных единиц, соответствующие решениям Генеральной конференции по мерам и весам, следующие.



Метр равен длине пути, проходимого светом в вакууме за 1/299792458 долю секунды.

Килограмм равен массе международного прототипа килограмма.

Секунда равна 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает на каждом участке проводника длиной 1 м силу взаимодействия, равную Н.

Кельвин равен 1/273.16 части термодинамической температуры тройной точки воды.

Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0.012 кг.

Кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.
3.3 Дополнительные единицы СИ
Международная система единиц включает в себя две дополнительные единицы - для измерения плоского и телесного углов.

Единица плоского угла - радиан (рад) - угол между двумя радиусами окружности, дуга между которыми по длине равна радиусу. В градусном исчислении радиан равен 57°17'48".



Стерадиан (ср), принимаемый за единицу телесного угла, - телесный угол, вершина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равную площади квадрата со стороной, по длине равной радиусу сферы.

Измеряют телесные углы путем определения плоских углов и проведения дополнительных расчетов по формуле


(1)

где Q - телесный угол; - плоский угол при вершине конуса, образованного внутри сферы данным телесным углом.

Телесному углу 1 ср соответствует плоский угол, равный 65°32', углу ср - плоский угол 120°, углу ср - плоский угол 180°.

Дополнительные единицы СИ использованы для образования единиц угловой скорости, углового ускорения и некоторых других величин. Сами по себе радиан и стерадиан применяются в основном для теоретических построений и расчетов, так как большинство важных для практики значений углов (полный угол, прямой угол и т.д.) в радианах выражаются трансцендентными числами ( , и т.д.).


3.4 Производные единицы СИ
Производные единицы Международной системы единиц образуются с помощью простейших уравнений между величинами, в которых числовые коэффициенты равны единице. Так, для линейной скорости в качестве определяющего уравнения можно воспользоваться выражением для скорости равномерного прямолинейного движения
(2)
При длине пройденного пути (в метрах) и времени t, за которое пройден этот путь (в секундах), скорость выражается в метрах в секунду (м/с). Поэтому единица скорости СИ - метр в секунду - это скорость прямолинейно и равномерно движущейся точки, при которой она за время 1 с перемещается на расстояние 1 м.

Если в определяющее уравнение входит числовой коэффициент, то для образования производной единицы в правую часть уравнения следует подставлять такие числовые значения исходных величин, чтобы числовое значение определяемой производной единицы было равно единице. Например, единица кинетической энергии СИ - килограмм-метр в квадрате на секунду в квадрате - это кинетическая энергия тела массой 2 кг, движущегося со скоростью 1 м/с, или кинетическая энергия тела массой 1 кг,

движущегося со скоростью м/с. Эта единица имеет особое наименование - джоуль (сокращенное обозначение Дж).
3.5 Кратные и дольные единицы
Наиболее прогрессивным способом образования кратных и дольных единиц является принятая в метрической системе мер десятичная кратность между большими и меньшими единицами.

В табл. 2 приводятся множители и приставки для образования десятичных кратных и дольных единиц и их наименования.


Таблица 2































Множитель




Приставка




Обозначение приставки














































русское




международное


































1018




экса




Э




Е


































1015




пета




П




Р


































1012




тера




Т




Т


































109




гига




Г




G


































106




мега




М




М


































103




кило




к




k


































102




гекто




г




h


































101




дека




да




da


































10-1




деци




д




d


































10-2




санти




с




c


































10-3




милли




м




m


































10-6




микро




мк








































10-9




нано




н




n


































10-12




пико




п




p


































10-15




фемто




ф




f


































10-18




атто




а




a






























Следует учитывать, что при образовании кратных и дольных единиц площади и объема с помощью приставок может возникнуть двойственность прочтения в зависимости от того, куда добавляется приставка. Так, сокращенное обозначение 1 км2 можно трактовать и как 1 квадратный километр и как 1000 квадратных метров, что, очевидно, не одно и то же (1 квадратный километр = 1.000.000 квадратных метров). В соответствии с международными правилами кратные и дольные единицы площади и объема следует образовывать, присоединяя приставки к исходным единицам. Таким образом, степени относятся к тем единицам, которые получены в результате присоединения приставок. Поэтому 1 км2 = 1 (км)2 = (103 м) 2 = 106 м2 [22].



Каталог: jspui -> bitstream -> 123456789
123456789 -> Сборник материалов II международной научно-практической конференции 20 апреля 2016 г. Доннту: Донецк, 2016 эл версия русск яз
123456789 -> Распознавание речи и голосовое управление
123456789 -> Черникова О. Ю., Мозговой В. И
123456789 -> Анализ методов восстановления никель-кадмиевых аккумуляторов после потери емкости в процессе эксплуатации
123456789 -> Основы семейного права Украины
123456789 -> В. И. Желязко, Т. Д. Лагун мелиорация, рекультивация и охрана земель
123456789 -> Тема: Установление, восстановление и закрепление границ зе-мельных участков
123456789 -> Министерство сельского хозяйства
123456789 -> Приоритетная задача современного земледелия за-ключается в повышении эффективности и стабильности сельскохозяйственного производства


Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8




База данных защищена авторским правом ©vossta.ru 2022
обратиться к администрации

    Главная страница