Конспект лекций учебной дисциплины профессионального цикла вариативной части гос впо по направлению подготовки бакалавра



страница6/8
Дата09.08.2019
Размер2.82 Mb.
#127573
ТипКонспект
1   2   3   4   5   6   7   8

6.6 Обнаружение грубых погрешностей
В начале главы уже было отмечено, что грубыми называют погрешности, явно превышающие по своему значению погрешности, оправданные условиями проведения эксперимента. Для их устранения желательно еще перед измерениями определить значение искомой величины приближенно, с тем чтобы в дальнейшем можно было сконцентрировать внимание лишь на уточнении предварительных данных. Если оператор в процессе измерений обнаруживает, что результат одного из наблюдений резко отличается от других, и находит причины этого, то он, конечно, вправе отбросить этот результат и провести повторные измерения. Но необдуманное отбрасывание резко отличающихся от других результатов может привести к существенному искажению характеристик рассеивания ряда измерений, поэтому повторные измерения лучше проводить не взамен сомнительных, а в дополнение к ним.

Особенно остро ставится вопрос об устранении грубых погрешностей при обработке уже имеющегося материала, когда невозможно учесть все обстоятельства, при которых проводили измерения. В этом случае приходится прибегать к чисто статистическим методам.

Вопрос о том, содержит ли данный результат наблюдений грубую погрешность, решается общими методами проверки статистических гипотез.

Проверяемая гипотеза состоит в утверждении, что результат наблюдения не содержит грубой погрешности, т.е. является одним из значений случайной величины Х с законом распределения , статистические оценки параметров которого предварительно определены. Сомнительным может быть в первую очередь лишь наибольший или наименьший из результатов наблюдений. Поэтому для проверки гипотезы следует воспользоваться распределениями величин


или (52)


Функции их распределения определяют методами теории вероятностей [3]. Они совпадают между собой и для нормального распределения результатов наблюдений протабулированы и представлены в табл.П.7 приложения. По данным этой таблицы, при заданной доверительной вероятности или уровне значимости можно для количества измерения найти те наибольшие значения , которые случайная величина может еще принять по чисто случайным причинам.

Если вычисленное по опытным данным значение окажется меньше , то гипотеза принимается; в противном случае ее следует отвергнуть как противоречащую данным наблюдений. Тогда результат или соответственно приходится рассматривать как содержащий грубую погрешность и не принимать его во внимание при дальнейшей обработке результатов наблюдений.


6.7 Классификация систематических погрешностей
Систематической погрешностью называется составляющая погрешности измерения, остающаяся постоянной или закономерно меняющаяся при повторных измерениях одной и той же величины [16,18]. При этом предполагается, что систематические погрешности представляют собой определенную функцию неслучайных факторов, состав которых зависит от физических, конструкционных и технологических особенностей средств измерений, условий их применения, а также индивидуальных качеств наблюдателя. Систематические погрешности можно вычислить и исключить их из результата измерений или исключить причины, вызывающие их появления. Сложные детерминированные закономерности, которым подчиняются систематические погрешности, определяются либо при создании средств измерений и комплектации измерительной аппаратуры, либо непосредственно при подготовке измерительного эксперимента и в процессе его проведения. Совершенствование методов измерения, использование высококачественных материалов, прогрессивная технология - все это позволяет на практике устранить систематические погрешности настолько, что при обработке результатов наблюдений с их наличием зачастую не приходится считаться.

В предыдущих лекциях, посвященных случайным погрешностям, было показано, что единственно правильным методом их анализа является математическая статистика. Случайные погрешности измерения изучались только в совокупности, без рассмотрения их фактических значений в каждом опыте. Систематические погрешности приходится изучать в каждом случае отдельно.

Систематические погрешности принято классифицировать в зависимости от причин их возникновения и по характеру их проявления при измерениях.

По характеру своего поведения в процессе измерения систематические погрешности подразделяются на постоянные и переменные.



Постоянные систематические погрешности возникают, например, при неправильной установке начала отсчета, неправильной градуировке и юстировке средств измерения и остаются постоянными при всех повторных наблюдениях. Поэтому, если уж они возникли, их очень трудно обнаружить в результатах наблюдений.

В зависимости от причин возникновения рассматриваются четыре вида постоянных систематических погрешностей:

1. Погрешности метода или теоретические (методические) погрешности, возникает из-за несовершенства метода измерения, вследствие недостаточного глубокой разработки теории данного метода измерений или сознательных упрощений при проведении измерений и в уравнениях, которые связывают между собой различные ФВ.

Пример:

В основу барометрического метода измерения высоты полета летательного аппарата на высотах до 11000 м положена гипсометрическая формула:

где: Н – высота над уровнем моря;

То – средняя абсолютная температура над уровнем моря;

Рст – статическое давление на высоте Н;

Ро – среднее давление на уровне моря;

R – газовая постоянная;

τ – средний температурный градиент.

Реальная зависимость Н=f(Рст) отличается от приведенной выше вследствие годовых, суточных и местных отклонений Ро, То, и τ от средних значений, а такие случайных изменений давления Рст на высоте Н. Эти отклонения от средних значений и являются причиной методической погрешности.

Погрешности метода возникают также при экстраполяции свойства, измеренного на ограниченной части некоторого объекта, на весь объект, если последний не обладает однородностью измеряемого свойства. Так, считая диаметр цилиндрического вала равным результату, полученному при измерении в одном сечении и в одном направлении, мы допускаем систематическую погрешность, полностью определяемую отклонениями формы исследуемого вала. При определении плотности вещества по измерениям массы и объема некоторой пробы возникает систематическая погрешность, если проба содержала некоторое количество примесей, а результат измерения принимается за характеристику данного вещества вообще.



К погрешностям метода следует отнести также те погрешности, которые возникают вследствие влияния измерительной аппаратуры на измеряемые свойства объекта. Подобные явления возникают, например, при измерении длин, когда измерительное усилие используемых приборов достаточно велико, при регистрации быстропротекающих процессов недостаточно быстродействующей аппаратурой, при измерениях температур жидкостными или газовыми термометрами и так далее.

  1. Инструментальные погрешности, зависящие от погрешностей применяемых средств измерений. Они присущи всем измерительными приборам и мерам. Эти погрешности возникают в результате допущенных нарушений технологий при изготовлении средств измерений: неточности при изготовлении деталей и сборки; нанесение отметок на шкалы стрелочных приборов. использовании таких приборов все измерения будут сопровождаться постоянной погрешностью.

Среди инструментальных погрешностей в отдельную группу выделяются погрешности схемы, не связанные с неточностью изготовления средств измерения и обязанные своим происхождением самой структурной схеме средств измерений. Исследование инструментальных погрешностей является предметом специальной дисциплины - теории точности измерительных устройств.

  1. Погрешность установки и эксплуатации - погрешности, обусловленные неправильной установкой и взаимным расположением средств измерения, являющихся частью единого комплекса, или отклонение реальных климатических и физических условий эксплуатации от номинальных, при которых проводились аттестация или градуировка прибора (влиянием внешних температурных, гравитационных, радиационных и других полей, нестабильностью источников питания, несогласованностью входных и выходных параметров электрических цепей приборов, установка прибора не по уровню, вблизи отопительных приборов и так далее – когда не выполняются требования НТД)

  2. Субъективные (личные) погрешности, обусловленные индивидуальными особенностями наблюдателя (оператора): высокой или низкой квалификацией, укоренившимися навыками, способностью длительное время производить измерения и не реагировать на посторонние воздействия, быстрой реакции, особенностями слуха, зрения. Такого рода погрешности вызываются, например, запаздыванием или опережением при регистрации сигнала, неправильным отсчетом десятых долей деления шкалы, асимметрией, возникающей при установке штриха посередине между двумя рисками.

Среди переменных систематических погрешностей принято выделять прогрессивные и периодические.

Прогрессивная погрешность возникает, например, при взвешивании, когда одно из коромысел весов находится ближе к источнику тепла, чем другое, поэтому быстрее нагревается и удлиняется. Это приводит к систематическому сдвигу начала отсчета и к монотонному изменению показаний весов.

Периодическая погрешность присуща измерительным приборам с круговой шкалой, если ось вращения указателя не совпадает с осью шкалы.

К таким погрешностям относятся следующие погрешности:

1) Инструментальные погрешности, изменяющиеся в зависимости от значения измеряемой величины это составляющая периодической систематической погрешности, которая возникает и изменяется при изменении значения измеряемой величины.

Пример:

Погрешность приборов со стрелкой, ось которой смещена относительно центра тяжести (шкалы).



2) Инструментальные погрешности за счет старения измерительной техники - эти погрешности не зависят от интенсивности эксплуатации СИ, могут возникнуть и во время его хранения на складе.

Пример:

Большинство образцовых резисторов и добавочных сопротивлений выполнены из манганина. Манганин в течении времени медленно изменяет свое удельное сопротивление.

3) Инструментальная погрешность за счет износа СИ

Пример:

Типичным примером подобной погрешности является погрешность за счет стирания гирь, что приводит к постоянному уменьшению их массы (микрометры, штангенциркули).

4) Погрешность вследствие непостоянства внешних условий - такая погрешность возникает вследствие изменения температуры окружающей СИ среды, влияния разнообразных постоянных и переменных магнитных и электрических полей, атмосферное давление и внешность воздуха.

Пример:

Повышение температуры окружающей СИ среды может привести к нагреву отдельных блоков, узлов и частей измерительного прибора.

Электромагнитные поля генераторов с различными частотами оказывают в некоторых случаях влияние на показания приборов.

Все остальные виды систематических погрешностей принято называть погрешностями, изменяющимися по сложному закону.

В тех случаях, когда при создании средств измерений, необходимых для данной измерительной установки, не удается устранить влияние систематических погрешностей, приходится специально организовывать измерительный процесс и осуществлять математическую обработку результатов. Методы борьбы с систематическими погрешностями заключаются в их обнаружении и последующем исключении путем полной или частичной компенсации. Основные трудности, часто непреодолимые, состоят именно в обнаружении систематических погрешностей, поэтому иногда приходится довольствоваться приближенным их анализом.
6.8 Способы обнаружения систематических погрешностей
Результаты наблюдений, полученные при наличии систематических погрешностей, будем называть неисправленными и в отличие от исправленных снабжать штрихами их обозначения (например и т.д.).

Вычисленные в этих условиях средние арифметические значения и отклонения от результатов наблюдений будем также называть неисправленными и ставить штрихи у символов этих величин. Таким образом,

(53)
Поскольку неисправленные результаты наблюдений включают в себя систематические погрешности, сумму которых для каждого -го наблюдения будем обозначать через , то их математическое ожидание не совпадает с истинным значением измеряемой величины и отличается от него на некоторую величину , называемую систематической погрешностью неисправленного среднего арифметического. Действительно,

Если систематические погрешности постоянны, т.е. то неисправленные отклонения могут быть непосредственно использованы для оценки рассеивания ряда наблюдений. В противном случае необходимо предварительно исправить отдельные результаты измерений, введя в них так называемые поправки, равные систематическим погрешностям по величине и обратные им по знаку:

Таким образом, для нахождения исправленного среднего арифметического и оценки его рассеивания относительно истинного значения измеряемой величины необходимо обнаружить систематические погрешности и исключить их путем введения поправок или соответствующей каждому конкретному случаю организации самoгo измерения. Остановимся подробнее на некоторых способах обнаружения систематических погрешностей.

Постоянные систематические погрешности не влияют на значения случайных отклонений результатов наблюдений от средних арифметических, поэтому никакая математическая обработка результатов наблюдений не может привести к их обнаружению. Анализ таких погрешностей возможен только на основании некоторых априорных знаний об этих погрешностях, получаемых, например, при поверке средств измерений. Измеряемая величина при поверке обычно воспроизводится образцовой мерой, действительное значение которой известно. Поэтому разность между средним арифметическим результатов наблюдения и значением меры с точностью, определяемой погрешностью аттестации меры и случайными погрешностями измерения, равна искомой систематической погрешности.

Ценность полученных при поверке результатов определяется их постоянством в течение некоторого промежутка времени и независимостью от тех изменений внешних условий, которые допустимы при эксплуатации средств измерений с заданной точностью. Тогда полученные при поверке данные могут быть использованы для вычисления поправок, необходимых для исправления результатов наблюдений.

Одним из наиболее действенных способов обнаружения систематических погрешностей в ряде результатов наблюдений является построение графика последовательности неисправленных значений случайных отклонений результатов наблюдений от средних арифметических.

Вначале рассмотрим случай, когда в ряде результатов наблюдений предполагается наличие постоянной систематической погрешности. Для того чтобы удостовериться в этом, исследователь, сделав несколько измерений, заменяет некоторые меры или измерительные приборы, включенные в установку и являющиеся предполагаемыми источниками постоянных систематических погрешностей, другими мерами и измерительными приборами и проводит еще несколько измерений.

Рассматриваемый способ обнаружения постоянных систематических погрешностей можно сформулировать следующим образом: если неисправленные отклонения результатов наблюдений резко изменяются при изменении условий наблюдений, то данные результаты содержат постоянную систематическую погрешность, зависящую от условий наблюдений.

При прогрессивной систематической погрешности последовательность неисправленных отклонений результатов наблюдений обнаруживает тенденцию к возрастанию или убыванию. На рис.12 изображена зависимость погрешности измерения от длины измеряемой детали.

Рис.12
Несмотря на большие случайные изменения погрешности тенденция к увеличению ее в отрицательном направлении с ростом измеряемой величины явно обнаруживается. Если бы случайные погрешности были невелики, то значения неисправленных отклонений меняли бы свой знак при некотором среднем значении измеряемой величины. Случайные погрешности несколько искажают эту картину, однако, если они даже одного порядка малости с систематическими погрешностями, в последовательности знаков можно заметить некоторую неравномерность: неисправленные отклонения результатов одного знака чаще встречаются в отрицательной полуплоскости, чем в положительной.

Если же в ряде результатов наблюдений присутствует периодическая систематическая погрешность, то группы знаков плюс и минус в последовательности неисправленных отклонений результатов наблюдений могут периодически сменять друг друга, если, конечно, случайные погрешности не особенно велики.

Обобщая два рассмотренных случая, можно сказать: если последовательность знаков плюс сменяется последовательностью знаков минус или наоборот, то данный ряд результатов наблюдений обнаруживает прогрессивную погрешность, если группы знаков плюс и минус чередуются - периодическую погрешность.



6.9 Введение поправок. Не исключенная систематическая погрешность
Систематические погрешности являются детерминированными величинами, поэтому в принципе всегда могут быть вычислены и исключены из результатов измерений путем введения поправок. Поправкой называется значение, обратное по знаку погрешности, которое необходимо прибавить к результату измерения, чтобы получить истинное или действительное значение измеряемой ФВ. В этом случае будем иметь исправленное значение измеряемой величины.

Погрешности удается устранить или существенно понизить различными экспериментальными приемами, применяемыми в процессе выполнения измерения. К таким приемам относятся:

- метод устранения влияющих ФВ;

- метод замещения;

- методы независимых измерений;

- методы вариации знака систематической погрешности;

- способы периодических и симметричных наблюдений.

После исключения систематических погрешностей получаем исправленные средние арифметические и исправленные отклонения результатов наблюдении, которые позволяют оценить степень рассеивания результатов.

Для исправления результатов наблюдений их складывают с поправками, равными систематическим погрешностям по величине и обратными им по знаку. Поправку определяют экспериментально при поверке приборов или в результате специальных исследований, обыкновенно с некоторой ограниченной точностью. Для исправления результата наблюдения его складывают только со средним арифметическим значением поправки:
(54)

где и – соответственно исправленный и неисправленный результаты наблюдений,

– среднее арифметическое значение поправки, определяемые экспериментально.

Поправки могут задаваться также в виде формул, по которым они вычисляются для каждого конкретного случая. Например, при измерениях и поверках с помощью образцовых манометров следует вводить поправки к их показаниям на местное значение ускорения свободного падения

где – измеряемое давление.

Введением поправки устраняется влияние только одной вполне определенной систематической погрешности, поэтому в результаты измерения зачастую приходится вводить очень большое число поправок. При этом вследствие ограниченной точности определения поправок накапливаются случайные погрешности и дисперсия результата измерения увеличивается.

Действительно, при исправлении неисправленного результата путем введения поправок по формуле

(55)


дисперсия становится равной

(56)


где – оценка дисперсии неисправленных результатов; – оценка дисперсии -й поправки.

Поправку имеет смысл вводить до тех пор, пока она уменьшает доверительные границы погрешности, т.е. пока выполняется неравенство

(57)

При малой дисперсии поправки на основании формулы (57) может показаться, что введение любой поправки повышает достоверность результата. Однако следует помнить, что погрешность результата выражается не более чем двумя значащими цифрами, поэтому поправка, если она меньше пяти единиц разряда, следующего за последним десятичным знаком погрешности результата, будет все равно потеряна при округлении, и вводить ее не имеет смысла.



Систематическая погрешность, остающаяся после введения поправок на ее наиболее существенные составляющие включает в себя ряд элементарных составляющих, называемых неисключенными остатками систематической погрешности. К их числу относятся:

погрешности определения поправок;

погрешности, зависящие от точности измерения влияющих величин, входящих в формулы для определения поправок;

погрешности, связанные с колебаниями влияющих величин (температуры окружающей среды, напряжения питания и т.д.).

Перечисленные погрешности малы и поправки на них не вводятся.

Для каждого данного измерения элементарные составляющие систематической погрешности имеют вполне определенные значения, но эти значения нам неизвестны. Известно лишь, что в массе однотипных измерений эти составляющие лежат в определенных границах или имеют определенные средние квадратические отклонения . В первом случае для неисключенных остатков следует принять равномерное распределение, во втором – нормальное. Дисперсия суммы неисключенных остатков систематической погрешности определяется как сумма их дисперсий и поэтому

(58)
где m1– число равномерно распределенных и m2 – число нормально распределенных элементарных составляющих [22].

7 МЕТРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ (МО)
7.1 Государственная система обеспечения единства измерений
Решение важнейших научно-технических задач, в том числе проблемы обеспечения качества продукции, в значительной степени зависит от достижения единства и достоверности измерений.

В первой части данного пособия отмечалось, что единство измерений – состояние измерительного процесса, при котором результаты всех измерений выражаются в одних и тех же узаконенных единицах измерения и оценка их точности обеспечивается с гарантированной доверительной вероятностью. В применявшихся до недавнего времени сравнительно простых методах измерений погрешность результатов измерений почти полностью определялась погрешностями средств измерений. Поэтому для достижения единства измерений было достаточно обеспечить единообразие средств измерений, т.е. такое состояние средств измерений, когда они проградуированы в узаконенных единицах измерений, а их метрологические свойства соответствуют нормам.

Существуют принципы обеспечения единства измерений, к основным из которых относятся:

- применение только узаконенных единиц физических величин (ФВ);

- воспроизведение ФВ с помощью государственных эталонов;

- применение узаконенных средств измерений, которые прошли государственные испытания и которым переданы размеры единиц ФВ от государственных эталонов;

- обязательный периодический контроль через установленные промежутки времени характеристик применяемых средств измерений;

- гарантия обеспечения необходимой точности измерений при использовании поверенных средств измерений и аттестованных методик выполнения измерений;

- использование результатов измерений только при условии оценки их погрешности с заданной вероятностью;

- систематический контроль за соблюдением метрологических правил и норм, государственный надзор и ведомственный контроль за средствами измерений.

Для реализации этих принципов созданы необходимые научная, техническая и организационная основы.


7.2 Цели, задачи и содержание МО
Из необходимости обеспечения единства и требуемой точности измерений формулируются задачи МО всех видов метрологической деятельности на общегосударственном и ведомственном уровнях.

Основными целями метрологического обеспечения являются:

- повышения качества продукции, эффективности управления производством и уровня автоматизации производственных процессов;

- обеспечение взаимозаменяемости деталей, сборочных единиц и агрегатов;

- повышения эффективности экспериментов и испытаний;

- повышение эффективности использования материальных ценностей и энергетических ресурсов.

К основным задачам МО на предприятиях относятся [6]:

- проведение анализа состояния измерений, разработка и осуществление мероприятий по совершенствованию МО на предприятии;

- установление рациональной номенклатуры измеряемых параметров и оптимальных норм точности измерений, внедрение современных методик выполнения измерений, испытаний и контроля;

- внедрение стандартов, регламентирующих нормы точности измерений;

- проведение метрологической экспертизы нормативно-технической, конструкторской и технологической документации;

- поверка и метрологическая аттестация средств измерений (СИ);

- контроль за производством, состоянием, применением и ремонтом СИ.

Ответственность за состояние и применение средств измерений на предприятиях несут инженеры, эксплуатирующие эти средства, а на предприятии (в организации) - руководитель предприятия (организации).


Каталог: jspui -> bitstream -> 123456789
123456789 -> Сборник материалов II международной научно-практической конференции 20 апреля 2016 г. Доннту: Донецк, 2016 эл версия русск яз
123456789 -> Распознавание речи и голосовое управление
123456789 -> Черникова О. Ю., Мозговой В. И
123456789 -> Анализ методов восстановления никель-кадмиевых аккумуляторов после потери емкости в процессе эксплуатации
123456789 -> Основы семейного права Украины
123456789 -> В. И. Желязко, Т. Д. Лагун мелиорация, рекультивация и охрана земель
123456789 -> Тема: Установление, восстановление и закрепление границ зе-мельных участков
123456789 -> Министерство сельского хозяйства
123456789 -> Приоритетная задача современного земледелия за-ключается в повышении эффективности и стабильности сельскохозяйственного производства


Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8




База данных защищена авторским правом ©vossta.ru 2022
обратиться к администрации

    Главная страница