Матема́тика — наука, изучающая количественные и пространственные соотношения, в действительном мире и человеческом воображении



страница1/4
Дата23.12.2017
Размер0.72 Mb.
#4251
ТипРеферат
  1   2   3   4


ВШЭ-ГУ

2010
Борис Григорьевич Миркин

Профессор

Кафедра анализа данных и искусственного интеллекта ГУ-ВШЭ Москва РФ

Department of Computer Science and Information Systems Birkbeck University of London UK

История и методология прикладной математики и информатики
Содержание:
1. Введение: чистая и прикладная математика; информатика . . . . . . . 2

2. Наследие античности: вклады Пифагора, Аристотеля и Архимеда. . . . 5

3. Развитие идей небесной механики . . . . . . . . . . . . . . . . . . . . . . 14

4. Развитие идей оптимизации. . . . . . . . . . . . . . . . . . . . . . . . . . 19

5. Развитие идей вероятности и статистики. . . . . . . . . . . . . . . . . . . 21

6. Развитие идей анализа данных . . . . . . . . . . . . . . . . . . . . . . . . 25

7. Развитие идей дискретной математики и графов . . . . . . . . . . . . . . 28

8. Развитие вычислительной техники и программирования . . . . . . . . 32

9. Развитие баз данных и знаний . . . . . . . . . . . . . . . . . . . . . . . . . 36

10. Работы по машинному интеллекту . . . . . . . . . . . . . . . . . . . . . 43

11. Перспективы дальнейшего развития . . . . . . . . . . . . . . . . . . . . 45

Курс отражает мои наблюдения и размышления за годы моей относительно успешной (5 монографий за период 1974-85) и в то же время не совсем удачной (4 докторские диссертации в 1974-1988) научной карьеры в СССР и работы за границей: Франция (1991-93), США (1993-98), Германия (1996-99) и Великобритания (2000-н.вр.). Степень подробности освещения разделов определяется двумя факторами: знакомством студента с материалами других дисциплин учебного плана, а также наличием у меня возможности для их описания.




  1. Математика, чистая и прикладная математика и информатика

Математика – это то, чем занимаются математики. За 2500 лет своего существования понятие о математике видоизменялось и обогащалось. Первоначально – это была абсолютно прикладная дисциплина, связанная с вычислениями (типа астрономических событий или разливами Нила) – в древнем Египте, и землемерием – в древнем Вавилоне, прежде всего с вычислением (они даже изобрели позиционную систему счисления и решали квадратные уравнения); в Египте – прежде всего с землемерием (по закону каждой семье выделялся одинаковый надел, и для поддержания справедливости надо было уметь перераспределять землю при нарушениях баланса, связанных с природными или семейными катаклизмами). Любопытно, что эти знания никак не обменивались, и идеи позиционного счисления вошли в Европейскую науку спустя многие сотни лет через арабскую математику.

Греки внесли в математику идею логического доказательства. Евклид описал планиметрию с помощью аксиоматического метода (аксиомы – логика – теоремы), который в настоящее время понимается многими как главная особенность математики в системе наук. Они же установили, что одни и те же соотношения могут описывать совершенно разные явления (созвучия как пропорции). Такие задачи как решение уравнений, вычисление объемов и описание движения вызвали к жизни появление развитых математических конструкций – вещественные и комплексные числа, функции и дифференциальное исчисление, теория оптимизации, дифференциальная геометрия, дифференциальные уравнения и пр. Это дало основание рассматривать математику как науку об описание количественных и пространственных форм окружающего нас мира.

Из русской Википедии

Матема́тиканаука, изучающая количественные и пространственные соотношения, в действительном мире и человеческом воображении. Существуют совершенно иные и весьма разнообразные трактовки предмета математики и её метода, например, некоторые придерживаются мнения, что математика — это наука о следствиях из непротиворечивых наборов аксиом

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. Математические понятия и теоремы не обязательно имеют соответствия чему-либо в физическом мире. Однако некоторые из исследуемых математикой объектов могут иметь прообразы в реальном мире, более или менее похожие на свои математические модели. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения. Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — цель, к которой стремится математика. Наряду с моделированием математика прибегает к обобщениям, например, обобщая понятие «пространство» до пространства n-измерений.

Изучение объектов в математике происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируется список аксиом и вводятся необходимые определения, а затем из аксиом с помощью правил вывода получают теоремы.

Многие нематематики рассматривают математику как некий универсальный язык, на котором удобно формулировать предположения или факты о свойствах различных явлений, после чего она, как мельница, переработает их в всевозможные следствия. Эти результаты возвращаются в знание о явлении путем их интерпретации. Мне близка эта точка зрения. Я бы назвал математику дисциплиной, занимающейся разработкой языков для описания структурных и количественных сторон различных явлений и способов перевода между ними.


Язы́к — система звуков, знаков, предназначенная для фиксации, переработки и передачи сведений от одного субъекта к другому.
Следует подчеркнуть, что «фиксация» в этом определении - это очень нетривиальный этап, связанный с выделением и пониманием существенных свойств явления.



Поделитесь с Вашими друзьями:
  1   2   3   4




База данных защищена авторским правом ©vossta.ru 2022
обратиться к администрации

    Главная страница