Министерство сельского хозяйства



страница1/18
Дата09.05.2018
Размер2.87 Mb.
ТипСамостоятельная работа
  1   2   3   4   5   6   7   8   9   ...   18



МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РЕСПУБЛИКИ КАЗАХСТАН

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ


имени ШАКАРИМА г. СЕМЕЙ

Документ СМК 3 уровня

УМКД

УМКД 042-18-25.1.66/03-2015



УМКД

Учебно-методические материалы по дисциплине «Химическая экология - 1»


Редакция № 1 от 11.09.2015 г.




УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

ДИСЦИПЛИНЫ

«Климатология и метрология»



для специальности 5В060800 – «Экология»
УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ


Семей

2015




УМКД 042-18-25.1.64/03-2015

Ред. № 1 от 11.09.2015 г.

Страница из 365



1

Глоссарий




2

Лекции




3

Лабораторные занятия




4

Самостоятельная работа студента







  1. Глоссарий

  2. Аллотропия – способность некоторых химических элементов образовывать несколько простых веществ, различных по строению и свойствам.

  3. Анион – отрицательно заряженный ион.

  4. Ангидриды – кислородсодержащие соединения, образующиеся при отнимании воды от кислородсодержащих кислот.

  5. Атом – наименьшая частица элемента, обладающая его химическими свойствами.

  6. Амфотерность – способность некоторых веществ в зависимости от условий проявлять кислотные или основные свойства.

  7. Валентность – свойство атомов данного элемента присоединять или замещать в соединениях определенное число атомов другого элемента.

  8. Валентные электроны – электроны, которые участвуют в образовании химической связи.

  9. Водородная связь возникает между молекулами, в состав которых входит атом водорода, связанный с атомами наиболее электроотрицательных элементов: фтора, кислорода, азота, реже хлора или серы.

  10. Водородный показатель (рН) – десятичный логарифм концентрации ионов водорода, взятый с обратным знаком:

  11. pH = -lg [H+].

  12. Восстановитель  химический элемент, принимающий электроны в процессе восстановления.

  13. Геохимия – наука о химическом составе атмосферы, гидросферы, литосферы Земли, о распространенности и распределении, сочетании и миграции химических элементов и их изотопов на Земле, изучающая историю элементов планеты.

  14. Гибридизация – процесс взаимодействия электронных орбиталей, приводящий к их выравниванию по форме и энергии.

  15. Гидролиз  это химическая реакция ионного обмена между водой и растворённым в ней веществом с образованием слабого электролита.

  16. Горение – быстро протекающий процесс окисления вещества, сопровождающийся большим выделением тепла и ярким свечением.

  17. Ингибитор - вещество, замедляющее скорость химической реакции, которое после её протекания остается химически неизменным.

  18. Интерметаллические соединения – химические соединения металлов друг с другом.

  19. Ионная связь образуется в результате электростатического притяжения ионов противоположного знака.

  20. Ионы – частицы, у которых количество электронов больше или меньше положительного заряда ядра.

  21. Катализатор – вещество, увеличивающее скорость химической реакции, которое после её протекания остается химически неизменным.

  22. Катион – положительно заряженный ион.

  23. Кислоты – сложные вещества, состоящие из атомов водорода, способных замещаться на металл, и кислотного остатка.

  24. Кислоты бескислородные в своем составе не содержат атомов кислорода.

  25. Кислоты двухосновные в своем составе содержат два атома водорода.

  26. Кислоты кислородсодержащие в своем составе содержат атомы кислорода.

  27. Кислоты одноосновные в своем составе содержат один атом водорода.

  28. Кислоты трехосновные в своем составе содержат три атома водорода.

  29. Ковалентная химическая связь – связь, которая возникает между атомами за счет образования общих электронных пар.

  30. Кристаллизация – процесс образования кристаллов из раствора или газовой фазы.

  31. Кристаллогидраты – вещества, содержащие в своем составе молекулы воды.

  32. Массовая доля вещества в смеси – отношение массы компонента к массе смеси:

  33. http://ido.tsu.ru/schools/chem/data/res/neorg/uchpos/text/img/clip_image002.gif или http://ido.tsu.ru/schools/chem/data/res/neorg/uchpos/text/img/clip_image004.gif.

  34. Величина безразмерная или выражается в %.

  35. Массовая доля растворенного вещества – масса растворенного вещества, содержащаяся в 100 граммах раствора. Равна отношению массы данного компонента к массе всего раствора:

  36. http://ido.tsu.ru/schools/chem/data/res/neorg/uchpos/text/img/clip_image006.gif.

  37. Величина безразмерная или выражается в %.

  38. Металлическая связь  связь в металлах или сплавах, обусловленная взаимодействием относительно свободных электронов с катионами в узлах кристаллической решетки.

  39. Металлоиды – сложные вещества, обладающие промежуточными свойствами.

  40. Металлы – твердые при комнатной температуре вещества (за исключением ртути), с металлическим блеском, высокой тепло- и электропроводностью. Атомы металлов отдают электроны, образуя при этом положительно заряженные ионы.

  41. Молекула – наименьшая частица вещества, способная к самостоятельному существованию, обладающая его химическими свойствами и состоящая из одинаковых или разных атомов.

  42. Моль – количество вещества, содержащее столько же структурных единиц этого вещества, которое имеется в 12 граммах изотопа углерода 12С.

  43. Насыщенный раствор – раствор, находящийся в равновесии с растворенным веществом и содержащий максимально возможное для данных условий количество этого вещества.

  44. Неметаллы – вещества, состоящие из молекул: газы, жидкости, летучие твердые вещества; не обладают металлическим блеском, имеют низкую тепло- и электропроводность. Атомы неметаллов принимают электроны для завершения внешнего энергетического уровня, образуя при этом отрицательно заряженные ионы.

  45. Нормальные условия соответствуют температуре 0°С, или 273 К, и давлению 1 атм = 101325 Па = 760 мм рт.ст.

  46. Объемная доля вещества в смеси – отношение объема, занимаемого компонентом, к общему объему смеси:

  47. http://ido.tsu.ru/schools/chem/data/res/neorg/uchpos/text/img/clip_image016.gif или http://ido.tsu.ru/schools/chem/data/res/neorg/uchpos/text/img/clip_image018.gif.

  48. Величина безразмерная или выражается в %.

  49. Окислитель  химический элемент, принимающий электроны в процессе восстановления.

  50. Оксиды – сложные соединения элемента с кислородом, в которых кислород имеет степень окисления -2.

  51. Оксиды амфотерные – оксиды, которые в зависимости от условий проявляют основные или кислотные свойства, т.е. обладают двойственной природой.

  52. Оксиды кислотные – оксиды, которым соответствуют кислоты; образованы неметаллами и металлами, проявляющими высокие степени окисления.

  53. Оксиды несолеобразующие, или безразличные, не проявляют ни кислотных, ни основных, ни амфотерных свойств и не образуют соли.

  54. Оксиды основные  оксиды, которым соответствуют основания; образованы только металлами.

  55. Оксиды солеобразующие обладают способностью образовывать кислоты, основания и соли.

  56. Основания двухосновные в своем составе содержат две гидроксильные группы.

  57. Основания, или гидроксиды – сложные вещества, содержащие атом металла и одну или несколько гидроксильных групп –ОН.

  58. Периодический закон Д.И. Менделеева – свойства простых веществ, а также формы и свойства их соединений находятся в периодической зависимости от заряда ядра элементов.

  59. Периодическая система химических элементов Д.И. Менделеева – упорядоченное множество химических элементов, их естественная классификация, которая является графическим выражением периодического закона химических элементов.

  60. Простые вещества состоят из атомов одного химического элемента.

  61. Процесс восстановления – процесс принятия электронов атомом или ионом.

  62. Процесс окисления  процесс отдачи электронов атомом или ионом.

  63. Радикал – частицы, обладающие свободными валентностями, т.е. имеющие неспаренные электроны на внешних орбиталях.

  64. Радиус атома – условное расстояние от ядра до границы электронной плотности.

  65. Раствор – однородная система, состоящая из двух или более компонентов и продуктов их взаимодействия.

  66. Сложные вещества, или химические соединения, состоят из атомов различных химических элементов, связанных друг с другом химической связью.

  67. Соли – сложные вещества, представляющие собой продукты полного или частичного замещения водорода в кислоте на металл или гидроксильной группы в основании на кислотный остаток

  68. Соли двойные – соли, состоящие из двух ионов разных металлов и кислотного остатка.

  69. Соли кислые – продукты неполного замещения атомов водорода в молекулах многоосновных кислот атомами металла.

  70. Соли комплексные – соли, в состав которых входят комплексные ионы (катионы или анионы) ион металла или кислотного остатка.

  71. Соли основные – продукты неполного замещения гидроксогрупп в многоосновных основаниях кислотными остатками.

  72. Соли средние – продукты полного замещения атомов водорода в молекуле кислоты атомами металла или полного замещения гидроксогрупп в молекуле основания кислотными остатками.

  73. Стандартные условия соответствуют температуре 25°С, или 298 К, и давлению 1 атм = 101325 Па = 760 мм рт. ст.

  74. Степень окисления – формальный заряд атома, вычисленный исходя из предположения, что все связи между атомами в молекуле ионные.

  75. Химическая коррозия  разрушение металла при взаимодействии его с сухими газами или жидкостями, не проводящими электрического тока.

  76. Химический элемент – это определенный вид атомов, характеризующийся определенной совокупностью свойств (зарядом ядра, массой и др.).

  77. Электролиз – окислительно-восстановительный процесс, протекающий при прохождении электрического тока через раствор или расплав.

  78. Электрон – элементарная частица, носитель наименьшей массы и наименьшего электрического заряда в природе.

  79. Электроотрицательность – способность элемента оттягивать на себя электронную пару.

  80. Электрохимическая коррозия – разрушение металла в среде электролита, в этом случае при контакте двух металлов различной активности с электролитом образуется гальваническая пара, электроны переходят от более активного металла к менее активному, и более активный металл разрушается.




  1. Лекции

ЛЕКЦИЯ 1

Тема: s - Элементы I группы

1. Общая характеристика элементов I А группы. Особенности лития и его соединений.

В периодической системе всего 14 s -элементов (включая водород и гелий). Это элементы I А и II А групп. Элементы I А группы – щелочные металлы Li, Na, K, Rb, Cs, Fr. Все они имеют на внешнем электронном уровне атома по одному электрону ns1, сильно удаленному от ядра, с низким потенциалом ионизации. Всегда проявляют степень окисления +1.



Сверху вниз в подгруппе возрастает радиус атома элементов за счет возникновения новых электронных уровней.



В группах по мере увеличения числа энергетических уровнейатомные радиусы растут. Переход нейтрального атома в катион , сопровождается уменьшением радиуса поскольку в катионе заряд ядра удерживает меньшее число электронов. Очевидно, с возрастанием заряда ионный радиус катиона будет падать.

Энергия ионизации – это та энергия, которую необходимо затратить на отрыв внешнего электрона у невозбужденного атома. Строение внешних оболочек ns1, поэтому они имеют низкие энергии ионизации, уменьшающиеся при переходе по подгруппе сверху вниз. Связь электрона с ядром ослабевает при этом за счет увеличения радиуса атома и экранирования заряда ядра предшествующими внешнему электрону оболочками, увеличивается расстояние электрона от ядра и энергия ионизации уменьшается.



С ростом заряда ядра от Na к Fr усиливаются восстановительные свойства, это самые активные металлы. Их стандартные электродные потенциалы  отрицательные и имеют большое абсолютное значение. Наиболее отрицателен  лития равный -3,02 В по сравнению с ионами других щелочных металлов (ион Li+ имеет среди них наименьший радиус), хороший комплексообразователь. Энтальпия гидратации катионов лития велика (∆Н° гидрат.= - 486,6 кДж/моль). Чем меньше алгебраическая величина потенциала, тем выше восстановительная способность этого металла и тем ниже окислительная способность его ионов. Металлический литий – самый сильный восстановитель, а ион Li+ самый слабый окислитель.

С увеличением порядкового номера, уменьшается относительная электроотрицательность (ОЭО).

Все щелочные металлы образуют одинаковую кристаллическую структуру. У щелочных металлов тип металлической структуры – объемно - центрированная кубическая упаковка (ОЦКУ).




Координационное число равно 8.

От Li к Cs увеличиваются размеры атомов и межъядерные расстояния в кристаллических решетках. Так как химическая связь большей длины является менее прочной, то по мере роста межъядерного расстояния уменьшается прочность кристаллических решеток, поэтому снижаются температуры плавления и кипения. Щелочные металлы активно окисляются кислородом воздуха при обычной температуре, поэтому их хранят под слоем керосина или бензина.


+ О2 = 2О

Взаимодействуют с другими окислителями (галогенами, серой, фосфором), образуя соединения LiCl, Li2S, Li3P, NaBr, Na2S.

С азотом взаимодействует только литий при обычной температуре.

6Li + N 2 = 2Li3N

Нагревая щелочной литий в струе газообразного водорода получают гидрид.



2Li + Н2 = 2LiH-.

С кислородом образуют оксиды, пероксиды, надпероксиды, озониды.



4Li + O2 → 2Li2O – оксид лития

2Na + O2 Na2O2 пероксид натрия

K + O2 KO2 – надпероксид (супероксид калия)

Пероксиды содержат диамагнитный ион О22-, надпероксиды– парамагнитный ион О2-.



Оксиды Na и K могут получиться при недостатке кислорода. Элементы могут образовывать озониды по реакции с озоном:



K + O3 KO3

KOH + O3KO3 + O2 + H2O

Все озониды, пероксиды, надпероксиды сильные окислители и разлагаются водой.



KO2 + H2OKOH + O2 + H2O2

KO2 + H2O(теплая)KOH + O2
КО3 + H2OKOH + O2

Причем разложение может идти как обменное взаимодействие.



Na2O2 + 2H2O → 2NaOH + H2O2

Оксиды щелочных металлов Ме2О – кристаллические термически устойчивые вещества, при взаимодействии с водой образуют щелочи.



Ме2О + Н2О = 2МеОH
Ме2O + H2O → 2MeOH лабораторные способы

2Na + 2H2O → 2NaOH + H2↑ получения щелочей
карбонатный способ получения щелочей:

Na2CO3 + Ca(OH)2 CaCO3↓ + 2NaOH
В промышленности NaOH получают электролизом раствора поваренной соли:

NaCl + H2O электролиз NaOH + Cl2 + H2

K ( - ) 2H2O + 2e = H2 + 2OH-

A ( + ) 2Cl- - 2e = Cl2

Этим способом получают достаточно чистый NaOH.

Оксиды и гидроксиды


Li2O
Na2O
K2O
Rb2O
Cs2O
Fr2O

растворимость

LiOH
NaOH
KOH
RbOH
CsOH
FrOH

сила оснований

Гидроксиды щелочных металлов МеОН – твердые кристаллические вещества, легкоплавки, хорошо растворяются в воде с выделением тепла (кроме LiOH), полностью диссоциируют на ионы, сила оснований растет от Li к Fr.

ЭОH  Э+ + OH-

Более активно реагируют с водой непосредственно щелочные металлы.



Интенсивность взаимодействия с водой увеличивается в ряду Li - Cs, Rb и Cs реагируют с Н2О со взрывом.


Свойства гидроксидов
Все растворимы в воде – щелочи.

LiOH, NaOH, KOH, RbOH, CsOH, FrOH


реакционная способность увеличивается


  1. реакция нейтрализации:

NaOH + HCl NaCl + H2O

  1. c кислотными оксидами:

NaOH + CO2 NaHCO3

2NaOH + CO2 Na2CO3 + H2O



  1. с амфотерными оксидами:

2NaOH + BeO + H2O → Na2[Be(OH)4]

  1. с неметаллами:

Сl2 + KOH KCl + KClO + H2O

холодная


Сl2 + KOHKCl + KClO3 + H2O

горячая



3S + 6NaOH → 2Na2S + Na2SO3 + 3H2O


  1. с амфотерными металлами:

2Al + 2NaOH + 6H2O 2Na[Al(OH)4] + 3H2


  1. с солями:

2AlCl3 + 6NaOH(недост.) 2Al(OH)3 + 6NaCl

AlCl3 +4NaOH(избыт.) Na[Al(OH)4] + 3NaCl


  1. с амфотерными гидроксидами:

Zn(OH)2 + 2NaOH Na2[Zn(OH)4]
Щелочи жадно поглощают из воздуха влагу и СО2, т.е. содержат примесь Н2О (в виде кристаллогидратов NaOHH2O) и карбонатов.

Щелочи при плавлении разрушают стекло и фарфор



ΔG0298= -100кДж


За счет этого щелочи нельзя долго хранить в посуде с пришлифованными пробками, они прилипают вследствие взаимодействия щелочи со стеклом.

Твердые щелочи и их концентрированные растворы разрушают живые ткани, особенно опасно попадание частиц твердой щелочи в глаза (приводит к слепоте).

Не только с кислотами, но даже с водой большинство щелочных металлов реагируют со взрывов – отсюда шутливые плакаты с серьезным подтекстом в студенческих практикумах: «Не хотите быть уродом, не бросайте натрий в воду!»
Особенности лития и его соединений
Литий существенно отличается от остальных элементов IA группы. Особые свойства характерны для всех элементов II периода. В отличие от остальных ионов щелочных металлов, у которых по 8 электронов на предвнешнем уровне ион Li+ имеет только 2 электрона. У лития на кайносимметричной 2р-орбитали нет еще ни одного электрона.

Связь лития с другими элементами имеет менее ионный характер, что приближает его к магнию (диагональное сходство элементов в периодической системе). В периодической системе только у 2-го или даже 3-го элемента А групп полностью проявляются характерные свойства. Аномальное поведение Li заключается в том, что у Li самое отрицательное значение электродного потенциала и можно ожидать, что Li поэтому должен быть самым активным из всех металлов. Но это не так. По активности он близок к Mg, Ca.

Поэтому низкое значение электродного потенциала объясняется тем, что у Li самая высокая энергия гидратации из-за малого размера атома. Такая закономерность справедлива лишь для всех водных растворов. По химическим свойствам Li отличается от щелочных металлов, как и его соединения.

Подобно соединениям магния малорастворимы в воде LiF, Li2CO3, Li3PO4. LiOH менее других растворим в воде.

Li взаимодействует с азотом Li3N,

6Li + N2 → 2Li3N-3 (нитрид лития),

с кремнием − Li4Si,



4Li + SiLi4Si (силицид лития)
с углеродом – Li2С2,

2Li + 2C = (ацетиленид лития)
с водородом − LiH,

2Li + H2 → 2LiH (гидрид лития)
с кислородом − Li2O

4Li + O2 → 2Li2O (оксид лития)
Гидроксиды МеОН, за исключением LiOH выдерживают нагревание до более 1000С, LiOH разлагается при температуре красного каления (550 – 6000С).

Кислородосодержащие соединения (LiOH, LiNO3, Li2CO3) при нагревании разлагаются.







Li2CO3 Li2O + CO2

Малый радиус иона Li+ обусловливает возможность координации лигандов вокруг этого иона, образование большого числа двойных солей, различных сольватов, высокую растворимость ряда солей лития в органических растворителях (подобно магнию).



Аналогию в свойствах соединений лития и магния можно объяснить близостью величин их ионных радиусов

r (Li+) = 0,068 нм, r (Mg+2) = 0,074 нм.

Получение элементов IА группы
Получение Li:


  1. В промышленности – электролизом расплавов солей:

2LiCl2Li + Cl2

расплав

K ( -) Li+ + 1eLi0

A (+) 2Cl- - 2eCl2

Электролизом водных растворов щелочных металлов их получить нельзя.



  1. Остальные металлы получают в основном:

а) металлотермией из расплавов солей или оксидов;

LiCl + Na Li + NaCl

CsCl + Na Cs + NaCl

Na – получить трудно, т.к. tпл Na и NaCl близки, и для понижения tпл необходимы добавки.

Наиболее чистый Na, K получают

б) электролизом расплавов их хлоридов или гидроксидов.


расплав

Реже используется восстановление соединений щелочных металлов Al, Si или коксом; полученные при этом металлы не отличаются высокой чистотой из-за частичного образования алюминатов, карбидов, силицидов.









Возможность протекания этих реакций объясняется более высокой летучестью щелочных металлов по сравнению с Si, С, Al (tкипения(Al) = 2467C, а tкипения (Na) = 983C).


Получение соды по методу Сольве
Исходные вещества NH3, CO2, NaCl,

вначале получают CO2



CaCO3 CaO + CO2

В теплый насыщенный раствор NaCl пропускают аммиак, а затем углекислый газ, вначале образуется NH4HCO3



1),

далее он вступает в обменную реакцию с NaCl

2) .

Из 4-х солей наименее растворим в воде NaHCO3, который выпадает в осадок, затем при нагревании

3) .

2. Водород (Hydrogenium – воду рождающий)

Имеет 3 изотопа: протий , дейтерий или Д и тритий или Т, тритий образуется в атмосфере в результате ядерных реакций, вызванных действием космического излучения.

Свободного водорода на Земле почти нет, в атмосфере его содержание не превышает 510-5%. Практически весь водород находится в связанном состоянии в составе многих минералов, углей, нефти, живых и растительных организмов, но самым распространенным его соединением является вода.

Водород – s-элемент, в различных вариантах периодической системы помещают его то в I A, вместе со щелочными металлами, то в VII A вместе с галогенами, а иногда рассматривают отдельно.

Со щелочными металлами он сходен в том, что образует положительный ион Н+ и играет роль восстановителя.

Но с галогенами у него больше сходства: в гидридах активных металлов (CaH2, NaH), содержится ион Н-, подобный ионам Г- (NaCl, CaCl2). Молекулы водорода и галогенов двухатомны (Н2, Cl2, Br2). Для водорода, как и для фтора, хлора, характерны газообразное состояние и неметаллические свойства. Потенциалы ионизации водорода и галогенов близки. Атомы водорода легко замещаются атомами галогенов в органических соединениях. Поэтому вариант ПС, где Н возглавляет VII А группу более правилен.

Особенности водорода – единственный валентный электрон водорода находится непосредственно в зоне действия атомного ядра. Особенностями строения атома водорода обусловлено существование водородной связи.
Получение Н2
В промышленности водород получают из воды и углеводородов. При этом восстановителем водорода при температуре (600-900С) являются атомы углерода

.

Конверсия метана с водяным паром:



.

При более высокой температуре (950-1100) можно получить разложением метана особо чистый водород и углерод.



В лаборатории:

1) при действии разбавленного раствора кислоты на активный металл (в аппарате Киппа):



или


2) щелочные металлы и щелочноземельные вытесняют водород из воды.



3) действием едких щелочей на металлы





или

4) разложением гидридов типичных металлов водой

5) электролизом воды (электролиз водных растворов щелочей).

2H2O2H2 + O2
Физические свойства. В обычных условиях водород – это самый легкий газ без цвета, запаха и вкуса, плохо растворим в воде.

Атомарный водород гораздо активнее молекулярного, для которого нужны дополнительные затраты энергии на расcпаривание электронов.

По электроотрицательности занимает промежуточное положение между неметаллами и металлами. И в реакциях с неметаллами и кислородсодержащими веществами играет роль восстановителя.

Химические свойства Н2

Водород легко соединяется с кислородом, горит на воздухе или в атмосфере чистого кислорода бледно-синим пламенем.

1)

Если состав смеси приближается к стехиометрическому

(2 объема Н2 и 1 объем кислорода), то смесь называется “гремучим газом”, т.к. реакция имеет в этом случае взрывной характер.

Водородно-кислородное пламя, имеющее температуру 2500-2800С используют для плавления тугоплавких металлов и автогенной сварки.

2) (при температуре 450 – 5000С и повышенном давлении, в присутствии катализатора).

3) (при нагревании).

4) (при повышении температуры и давления, в присутствии катализатора).

5) (с очень активными металлами водород взаимодействует непосредственно как окислитель, превращаясь в ион Н- (гидрид-ион).


3. Вода и ее свойства. Экологическое и биологическое значение Н2О
Три изотопа водорода и три стабильных изотопа кислорода 16О, 17О, 18О в различных сочетаниях могут образовывать 18 изотопических разновидностей воды с молекулярными массами от 18 до 24 (Т218О). В тяжелой воде вещества растворяются хуже, растворы меньше проводят электрический ток. Она гигроскопична, жадно поглощает влагу из воздуха. Помещенные в нее без предварительной подготовки живые существа (рыбы, черви и т.п.) погибают, семена в ней не прорастают, микробы не живут. Вода имеет очень большое значение в жизни растений, животных и человека. Согласно с современными представлениями происхождение жизни связано с водной средой. Во всяком живом организме в воде протекают химические процессы, обеспечивающие жизнедеятельность организма.


1045’
Физические свойства. Чистая вода бесцветная, прозрачная жидкость, без запаха и вкуса. Плотность воды при переходе из твердого состояния в жидкое не уменьшается, как у всех других веществ, а возрастает и максимальной плотностью обладает вода при 4С, а при дальнейшем нагревании плотность ее уменьшается.

Вода обладает аномально большой теплоемкостью равной 4,18 , песок = 0,79, NaCl = 0,88 (Дж/(гК).

Поэтому это имеет большое значение для жизни. При переходе от лета к зиме, ото дня к ночи она остывает медленно и является регулятором температуры на земном шаре.

Она имеет самую высокую температуру кипения в ряду

Н2О – Н2S – H2Se – H2Te,

Tкипения, °С 100 -60 -41 -2


Если от H2Te к Н2S температура кипения закономерно уменьшается, то при переходе от Н2S к Н2О резко увеличивается. Это объясняется наличием водородной связи между молекулами воды, вследствие кулоновского взаимодействия положительно заряженного атома водорода одной молекулы и электроотрицательным атомом кислорода другой

Такое взаимодействие затрудняет отрыв молекул друг от друга, т.е. уменьшает их летучесть, а, следовательно, повышает температуру кипения.

Молекула воды из-за sp3-гибридизации орбиталей атома кислорода имеет угловую конфигурацию, а атомы водорода, соединенные с сильно-электроотрицательным атомом кислорода, определяют ее способность к установлению четырех водородных связей с соседними молекулами.


О
Н

Н



1045’



Химические свойства Н2О

Вода – очень активный реагент по следующим причинам:

а) за счет ориентационного взаимодействия с полярными молекулами других веществ;

б) установления водородных связей;

в) проявления донорных свойств со стороны атома кислорода по отношению к частицам – акцепторам электронных пар;

г) электролитической диссоциации при обычных условиях (ионы Н+ гидратируются, образуя ионы Н3О+ ).



1. При температуре выше 1000С диссоциация водяного пара, но равновесие сдвинуто в сторону воды.

.

2. Оксиды металлов и неметаллов соединяются с водой, образуя основания и кислоты (гидрооксиды).





3. Некоторые соли образуют с водой кристаллогидраты. При растворении веществ с ионной структурой молекулы растворителя удерживаются около иона силами электростатического притяжения, т.е. за счет ион -дипольного взаимодействия.

Например: кристаллогидрат сульфата натрия Na2SO410H2O (глауберова соль), Na2CO310H2O - кристаллическая сода.

Гидраты, образующиеся в результате донорно-акцепторного взаимодействия (где ионы растворенного вещества выступают обычно в качестве акцепторов, а молекулы растворителя в качестве доноров электронных пар) представляют собой частный случай комплексных соединений.

Аквакомплексы – лигaндами является вода, [Co(H2O)6]Cl2, [Al(H2O)6]Cl3, [Cr(H2O)6]Cl3 и др. Некоторые аквакомлексы в кристаллическом состоянии удерживают кристаллизационную воду [Cu(H2O)4]SO4H2O – медный купорос.


4. Пероксид водорода. Окислительно - восстановительная двойственность Н2О2
1. Строение молекулы. Структурная формула Н - О – О - Н. Энергия связи О-О (210 кДж/моль) почти в 2 раза меньше энергии связи О-Н (468 кДж/моль). Из-за несимметричного распределения связей Н - О молекула Н2О2 сильно полярна. Между молекулами Н2О2 возникает довольно прочная водородная связь, поэтому в обычных условиях Н2О2 – сиропообразная светло-голубая жидкость с высокой температурой кипения равной 150С. Температура плавления 0,41С. Почти в 1.5 раза тяжелее воды, поверхностное натяжение (σ) больше, чем у Н2О.

В молекуле Н2О2 связи между атомами кислорода и водорода полярны (вследствие смещения общих электронных пар к кислороду). В водных растворах – это слабая кислота, хоть и в незначительной степени распадается на ионы:



I ст. К1 = 2,610-12.

II ст. практически не протекает,

т.к. подавляется диссоциацией Н2О, которая протекает в большей степени, чем Н2О2. Сместить диссоциацию по 2-й ступени можно введением щелочи.



2. С некоторыми основаниями Н2О2 взаимодействует непосредственно образуя соли, что подтверждает его кислотные свойства.

Ba(OH)2 + H2O2 = BaO2 + 2H2O

соль


пероксида водорода

3. В отличие от воды пероксид водорода – непрочное соединение, разлагается даже при комнатной температуре (диспропорционирует на свету)

Н2О2-1 + Н2О2-1 = О20 + 2Н2О-2

Н2О2 = Н2О+ О

Неустойчивость Н2О2 обусловлена непрочностью связи О - О.

Атомы кислорода в молекуле Н2О2 связаны непосредственно друг с другом неполярной ковалентной связью. Связи О - Н полярны. Поэтому молекула Н2О2 также полярна.

Пероксиды относят к классу солей. Как соли они могут вступать в реакцию обмена с кислотами:



ВаО2 + Н2SO4 = BaSO4 + H2O2

в отличие от оксидов



SnO2 + 2H2SO4 = Sn(SO4)2 + 2H2O

Этой реакцией пользуются для различия оксидов и пероксидов.


0,95А°

1,48А°


Н 0.95 А0 = 0,095нм

1,48 А0 = 0,148нм

120°

О О


95°

Н

ЕО-О = 210 кДж/моль ЕО-Н = 468 Дж/моль


Молекула нелинейна, две связи О - Н расположены не симметрично, а в 2-х плоскостях под углом 120. Поэтому полярность Н2О2 > Н2О.
4. Окислительно-восстановительная двойственность Н2О2

Н2О2 + 2КI = I2 + 2KOH

окислитель восстановитель



Н2О2 + Ag+2O = 2Ag0 + O2 + H2O

восстановитель окислитель



H2O2 + KMnO4 + H2SO4 → O2 + MnSO4 + K2SO4 + H2O

H2O2 + KI + H2SO4 → H2O + I2 + K2SO4

Na2O2 и K2O2 – используют для регенерации кислорода в подводных лодках и в изолирующих противогазах.



2Na2O2 + 2CO2 → 2Na2CO3 + O2

Наличие атомарного кислорода сообщает Н2О2 и Na2O2 сильные окислительные свойства. Na2O2 способен гидролизоваться с образованием H2O2 по реакции



Na2O2 + 2H2O = 2NaOH + H2O2

В связи с этим они находят применение для отбеливания шерсти, шелка, мехов.

Аптечная перекись водорода – 3% водный раствор Н2О2, применяется как дезинфицирующее средство, (30% раствор называется пергидроль).
5. Биогенная роль элементов IА группы
Литий.

Недостаток лития в пищевом рационе способствует заболеваемости маниакально-депрессивными психозами, шизофренией и др. Для депрессивных больных характерен избыток, а для страдающих маниями – недостаток натрия в клетках. Роль же лития важна для выравнивания натрий -калиевого баланса в организмах больных.



Биологическая роль K и Na. Взаимосвязь ионов K и Na в биологических системах. Калий как необходимый элемент цитоплазмы, натрий как элемент межклеточных растворов

Содержание натрия в организме человека массой 70 кг составляет 60г. Из этого 44% натрия находится во внеклеточной жидкости и 9% - во внутриклеточной. Концентрация Na+ внутри клетки приблизительно в 15 раз меньше, чем во внеклеточной жидкости. Наоборот, концентрация К+ приблизительно в 35 раз выше внутри клетки, чем вне ее.

Остальное количество находится в костной ткани, являющейся местом депонирования иона Na+ в организме (около 40%). Натрий – основной внеклеточный ион, в организме находится в виде растворимых солее NaCl, Na3PO4, NaHCO3, распределен в сыворотке крови, спинномозговой жидкости, по всему организму, глазной жидкости, пищеварительных соках, желчи, почках, легких, мозге. Натрий поддерживает постоянство осмотического давления и кислотно-основное равновесие (фосфатная буферная система Na2HPO4 + NaH2PO4).

Натрий содержится в поваренной соли, овощах. Натрий концентрируют в больших количествах водоросли, ламинарии, фукусы. Высокие содержания натрия способна переносить сахарная свекла.

. В поддержании кислотно - щелочного равновесия в организме важнейшая роль принадлежит натрию. Его главная обязанность поддерживать нормальное кровяное давление, защищать организм от потери жидкости, влиять на мышечную активность.

Радиоактивный 24Na используется в качестве метки для определения скорости кровотока и для лечения некоторых форм лейкимии.

NaCl – основной источник соляной кислоты для желудочного сока. Непрерывное, избыточное появление NaCl в организме способствует развитию гипертонии. Около 90% потребляемого натрия выводится мочой, а остальные – с потом и калом.

Изотонический раствор NaCl (0,9%) для инъекций вводят подкожно, внутривенно при обезвоживании организма и при интоксикациях, а также применяют для промывания глаз, слизистой оболочки носа, а также для растворения лекарственных препаратов.

Гипертонические растворы NaCl (3-5-10%) применяют наружно в виде компрессов и примочек при лечении гнойных ран. Применение таких компрессов способствует, по законам осмоса, отделению гноя из ран и плазмолизу бактерий.

NaCl – используется для консервирования продукции сельского хозяйства (соления, квашения овощей).

NaOH – (каустическая сода) используется в мыловаренной, кожевенной, фармацевтической, текстильной промышленность и в сельском хозяйстве, 10%-ый раствор входит в состав силамина, применяемого в ортопедической практике для отливки огнеупорных моделей.

NaHCO3 (питьевая, чайная сода) – применяют в виде полосканий, промываний при воспалительных заболеваниях глаз, слизистых оболочек верхних дыхательных путей. Действие основано на гидролизе, раствор имеет слабощелочную среду.

NaHCO3 + H2ONaOH + H2CO3.

При воздействии щелочей на микробные клетки происходит осаждение клеточных белков и вследствие этого гибель микроорганизмов. NaHCO3 применяется в кондитерском деле, в медицине, в лабораторной практике.

NaHCO3 – используют при повышенной кислотности (ацидоз), взаимодействует с кислыми продуктами, образуя натриевые соли органических кислот, которые выводятся с мочой, а СО2 с выдыхаемым воздухом.

NaHCO3 + HCl = NaCl + H2O + CO2

– нейтрализуется избыточная соляная кислота. Слишком большая доза NaHCO3 приводит к алкалозу, что не менее вредно, чем ацидоз.



Na2CO3 – (кальцинированная сода).

Na2CO3 • 10H2O – (кристаллическая сода), потребляется мыловаренной, стекольной, текстильной, бумажной, нефтяной промышленностью.

Na2SO4 • 10H2O – глауберова соль (мирабилит) или слабительное. Эта соль медленно всасывается из кишечника, что приводит к повышению осмотического давления и накоплению воды в кишечнике, содержимое его разжижается, и каловые массы быстрее выводятся из организма.

Na2B4O7 · 10H2O - (бура) применяется наружно, как антисептическое средство для полосканий, спринцеваний, смазываний. Антисептическое действие аналогично NaHCO3 и связано с гидролизом и с образованием противомикробного лекарственного средства борной кислоты.

Na2B4O7 + 7H2O ↔ 4H3BO3 + 2NaOH

NaNO3 – натриевая (чилийская) селитра, азотное удобрение с нитратной формой азота.

Na3[AlF6] – криолит

Наибольшее практическое значение среди соединений натрия имеют: NaOH – каустическая сода, NaHCO3 – питьевая сода, Na2CO3 - кальцинированная сода, Na2CO310H2O – кристаллическая сода.



Калий.

Содержание калия в организме 70 кг приблизительно 160г. Калий - основной внутриклеточный катион, распространен по всему организму: печень, почки, сердце, костная ткань, мышцы, кровь, мозг. Ионы К+ играют важную роль в физиологических процессах – сокращении мышц, функционировании сердца, проведении нервных импульсов. Калий антагонист натрия. Калий в отличие от натрия «работает» внутри клеток, где участвует в регулировании водного баланса. Необходим калий для нормальной работы сердечной мышцы.

Почти все соли калия хорошо растворимы в воде, но в отличие от солей натрия не содержат кристаллизационной воды. Вместе с азотом и фосфором, калий – один из основных элементов питания растений, при отсутствии его они погибают.

Забирают из почвы калий подсолнечник, лен, конопля и калий накапливается в их стеблях. Калий участвует в процессе фотосинтеза, приводит к снижению содержания сахаров в корнеплодах свеклы и крахмала в зерне, отмиранию листьев растений, снижению всхожести семян, восприимчивости к грибковым заболеваниям.

Na и К присутствуют в почвах в трех основных формах – необменной, обменной, водорастворимой. Основная масса щелочных металлов (более 99 %) в необменной форме. В обменной форме калия больше чем натрия, т.к. калий прочнее удерживается почвенными ионообменниками. Натрий входит в ППК только в солонцах и засоленных почвах. В почвенных растворах натрий преобладает над калием. Катионы Na+ слабо удерживаются почвенными массами, мигрируют на далекие расстояния. Накапливаются в океанах, морях, соленых озерах.

Соли натрия накапливаются в почвах засушливых районов, вызывая засоление. Засоленные почвы (солонцы, солончаки, солоди) содержат много Na2CO3, Na2SO4, NaCl. Для этих почв характерны щелочная среда, высокое осмотическое давление, так называемая физиологическая сухость. Это нарушает поступление воды в корни растений, вызывает их увядание и гибель. Эти почвы подвергают нейтрализации и рассолонцеванию. Для этого вносят гипс CaSO4•2H2O (гипсование).



Особенно велика биогенная роль калия. В культурных растениях большие содержания калия обнаружены в картофеле, свекле, табаке, изюме, черносливе, цветной капусте, редьке, абрикосах, подсолнечнике. В животных организмах калий имеется в печени, селезенке. Велико содержания калия в эритроцитах, крови животных. В организмах калий находится в виде минеральных солей органических кислот (щавелевой, лимонной, пировиноградной). Установлено, что соли калия не могут быть заменены в организме никакими другими солями.

При недостатке калия в почвах растения поражаются грибковыми и бактериальными болезнями, листья их бледнеют и отмирают.

При нарушении деятельности почек у животных калий накапливается в крови, что приводит к тяжелым расстройствам функций сердца, мышц, центральной нервной системы. Калий играет большую роль в обмене веществ и фотосинтезе. Ферсман сказал о значении калия для организмов «Калий – основа жизни растений».



KCl – концентрированное калийное удобрение, является сырьем для получения сильвинита (KCl NaCl).

KNO3 – калийная селитра, сложное удобрение, содержит два элемента питания растений – калий и азот, используется в производстве тугоплавкого стекла и черного пороха.

KPO3 – метафосфат, сложное удобрение содержит – два элемента калий и фосфор.

K2SO4 – самое дорогое из калийных удобрений, т.к. методы получения дороги.

K2CO3 (поташ) – зола, необходим в мыловарении, стекольном производстве, в фотографии, при крашении тканей.

K2OAl2O36H2O – полевой шпат (ортоклаз).

ЛЕКЦИЯ 2


Каталог: ebook -> umkd
umkd -> Программа дисциплины «Аграрная экология»
umkd -> Республики казахстан
umkd -> Лекция Теоретические основы стратегии экономического развития Республики Казахстан
umkd -> Республики казахстан
umkd -> Лекция часа Приборы для контроля параметров микроклимата, систем вентиляции, пылегазового режима, пылегазоулавливающих систем
umkd -> Республики казахстан
umkd -> Республики казахстан
umkd -> Учебно-методическии комплекс
umkd -> Республики казахстан
umkd -> Учебно-методический комплекс дисциплины «Основы судебно-медицинской экспертизы»


Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7   8   9   ...   18


База данных защищена авторским правом ©vossta.ru 2019
обратиться к администрации

    Главная страница