Период прохождения практики с 09. 02. 2012 по 13. 06. 2012 г


Глава 3.Производство стали в кислородном конвертере



страница5/17
Дата28.11.2017
Размер1.2 Mb.
1   2   3   4   5   6   7   8   9   ...   17

Глава 3.Производство стали в кислородном конвертере


Конвертерный процесс возник в середине XIX в. Существовавшие в то время способы производства стали (пудлинговый и тигельный) не могли уже в достаточной мере удовлетворить возросшие потребности в металле, связанные с увеличением масштабов железнодорожного строительства, судостроения, машиностроения, развитием военной техники и т. п. В 1856г. английский механик Генри Бессемер предложил новый способ передела чугуна в сталь.

12 февраля 1856г. Г.Бессемер подал заявку на получение патента. В заявке указывалось, что, если в достаточных количествах вводить в металл атмосферный воздух или кислород, он вызывает интенсивное окисление примесей жидкого металла и либо поддерживает температуру последнего, либо повышает ее, и состав металла, остающегося в жидком состоянии, меняется от чугуна до стали или ковкого железа без затрат горючего. К 1860 г. Бессемер закончил разработку конструкции агрегата, предназначенного для продувки чугуна, предложив вращающийся вокруг горизонтальной оси аппарат (названный им конвертером), состоящий из металлического кожуха, футерованного изнутри. С тех пор прошло более 100 лет, однако конструкция конвертера не изменилась. Изменялись лишь способы изготовления кожуха, его форма и размеры, состав и методы изготовления огнеупорной футеровки, соотношения высоты и диаметра конвертера. Предложенный Бессемером метод получил название бессемеровского процесса, а предложенный им агрегат — бессемеровского конвертера.

Поиски методов получения в конвертерах стали с низким содержанием фосфора и серы привели к созданию конвертера с основной футеровкой. Автором этого метода принято считать английского металлурга С. Томаса, который в 1878 г. осуществил переплав чугуна в конвертере, футерованном обожженным доломитом. Для получения высокоосновного шлака в конвертер загружали известь. Опыт показал, что при наличии основного шлака в конвертере можно перерабатывать высокофосфористый чугун, что имело особое значение для стран Западной Европы, учитывая большие запасы фосфористых железных руд в Эльзасе и Лотарингии. Способ переработки высокофосфористых чугунов путем продувки воздухом в конвертерах с основной футеровкой в большинстве стран получил название томасовского.

В основу конвертерного процесса положена обработка расплава газообразными окислителями без дополнительного подвода тепла извне. Технологический процесс плавки осуществляется за счет химической теплоты экзотермических реакций и физического тепла, вносимого жидким чугуном. Плавка ведется в специальном агрегате — конвертере, который представляет собой сосуд, футерованный изнутри огнеупорными материалами. Сложившаяся за годы существования процесса форма рабочего пространства конвертера обеспечивает обработку расплава газом-окислителем с очень большой интенсивностью, без значительных потерь металла. На большой реакционной поверхности, возникающей в процессе продувки, с высокой скоростью протекают реакции окисления примесей и соответственно достигается высокая производительность агрегата.

Разнообразие исходных шихтовых материалов, определяемое главным образом химическим составом чугуна и лома, а также требованиями к качеству выплавляемого металла, привело к возникновению многих разновидностей конвертерного способа производства стали. В зависимости от применяемой футеровки конвертерные процессы могут быть кислыми или основными; в зависимости от используемого газа они могут быть на воздушном, кислородном или смешанном дутье. Способы подвода дутья отличаются разнообразием и в зависимости от способа его подачи могут быть объединены в группы: с верхней (через водоохлаждаемую фурму), с нижней через дно (с помощью специальных устройств) и с комбинированной продувкой (одновременная подача газов сверху и снизу).

Потребность в повышении доли перерабатываемого лома при выплавке стали в конвертерах привела к созданию ряда новых разновидностей конвертерных процессов с использованием дополнительных источников тепловой энергии в виде более полной утилизации тепла отходящих газов, использования газообразного, жидкого и твердого видов топлива.



3.1. Конструкция конвертера


Общая компоновка конвертера как сталеплавильного агрегата определяется технологическими особенностями плавки, обеспечивающими максимальную производительность. Для снижения потерь времени при осуществлении отдельных технологических операций, связанных с загрузкой шихтовых материалов, процессом продувки, необходимостью ввода шлакообразующих и добавочных материалов по ходу плавки, а также отвода образующихся газов, выпуска металла и слива шлака рабочее пространство конвертера выполнено подвижным и может занимать по мере необходимости различные положения, вращаясь вокруг своей оси на 360°. Поэтому комплекс конвертерной установки включает в себя следующие составные части: корпус конвертера с опорно-поворотными цапфами и механизмом поворота, систему подачи окислительных и нейтральных газов, систему отвода, охлаждения и очистки дымовых газов, систему подачи шлакообразующих и добавочных материалов, а также устройства для обслуживания и ремонта футеровки конвертера.


Рис.9 Кислородный конвертер:

1 — корпус с футеровкой; 2 кислородная фурма; 3рабочее пространство; 4—опорные узлы; 5 — механизм поворота; 6опорное кольцо



В кислородном конвертере продувку осуществляют кислородом через фурму, которую вводят сверху по оси конвертера. Управление процессом плавки ведут в основном посредством изменения положения фурмы и давления кислорода.

Емкость (вместимость) конвертеров изменяется в широких пределах. В нашей стране эксплуатируют конвертеры емкостью от 160 до 400 т. В устройстве современного конвертера (рис. 9) можно выделить цилиндрическую среднюю часть, концентрическую горловину (в виде усеченного конуса) и сферическое днище.

Исходя из опыта последних лет, минимальные потери металла при нормальном ходе продувки (без выбросов) достигаются при объеме рабочего пространства конвертера, превышающем в 5—7 раз объем расплава в спокойном состоянии. Поэтому в ГОСТ заложено, что удельный объем конвертеров независимо от их емкости должен составлять 0,8-1,0 м3/т. Отношение полной высоты рабочего пространства к его диаметру должно быть в пределах 1,2—1,6.

Объем ванны кислородного конвертера и все основные параметры определяются его емкостью с учетом интенсивности продувки.

В современных конвертерах глубина ванны 1,6—1,9 м, удельная площадь поверхности ванны 0,12-0,18 м2/г.

Корпус конвертера обычно глуходонный, сварной конструкции. Днища могут быть как глухие, так и отъемные (приставные или вставные). Конвертеры с отъемными днищами легче ремонтировать, так как при отъеме днища футеровка охлаждается быстрее. Кроме того, возможна замена только футеровки отъемного днища (без корпуса). Корпус конвертера помещается в опорное кольцо и крепится в нем. Узлы крепления и опорное кольцо закрыты от попаданий металла и шлака защитным кожухом, приваренным к корпусу. Крепление корпуса конвертера к опорному кольцу осуществляют при помощи системы шарнирных подвесок и упоров, исключающих раскачивание конвертера при продувке металла кислородом и под воздействием колебаний жидкого металла. В системе крепления должна быть учтена неодинаковая степень колебаний температуры корпуса и опорного кольца и обеспечена независимость их температурных деформаций. Привод конвертера представляет собой систему, состоящую из нескольких электродвигателей и механизма поворота (обычно один большой тихоходный и несколько быстроходных редукторов). При разработке конструкции конвертера учитывается основное требование, предъявляемое к сосудам с жидким металлом, — обеспечение их устойчивости при любых углах наклона, т. е. возможность возврата в исходное положение при неполадках в работе двигателей. Масса конвертера емкостью 300—350т с комплектующим оборудованием равна 1200 т. Корпус конвертера имеет жесткую съемную горловину и приварную летку (или «сталевыпускное отверстие») со сменным обрамляющим фланцем.






Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   ...   17


База данных защищена авторским правом ©vossta.ru 2019
обратиться к администрации

    Главная страница