Пояснительная записка цели и задачи реализации основной образовталельной программы среднего общего образования 4


Математика: алгебра и начала математического анализа (140 ч.)



страница7/22
Дата09.08.2019
Размер2.78 Mb.
#127943
ТипПояснительная записка
1   2   3   4   5   6   7   8   9   10   ...   22

1.2.2.5. Математика: алгебра и начала математического анализа (140 ч.)


Пояснительная записка

Статус документа

Данная рабочая программа ориентирована на учащихся 10-11 классов и составлена на основе примерной программы среднего (полного) общего образования по математике (профильный уровень), федерального государственного стандарта среднего (полного) общего образования по математике (профильный уровень) и авторской программы С.М. Никольского «Программы общеобразовательных учреждений. Алгебра и начала анализа. 11-11 классы. - М.: Просвещение, 2010.

Программа соответствует учебникам «Алгебра и начала анализа» для 10 и 11 классов С.М. Никольского и др. – М.: Просвещение, 2009- 2014. На преподавание алгебры и начал анализа в 10 и 11 классах отводится по 4 часа в неделю, т.е. по 140 часов в год, всего 280 часов.

Структура документа

Настоящая рабочая программа по алгебре и началам анализа включает разделы: пояснительную записку, содержание учебного курса с примерным распределением учебных часов по разделам, требования к уровню подготовки по алгебре и началам анализа выпускников, календарно - тематическое планирование, содержащее список рекомендованной литературы для учителя и ученика.



Цели изучения алгебры и начал анализа

Изучение алгебры и начал анализа в старшей школе на профильном уровне направлено на достижение следующих целей:



  • формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;

  • овладение языком математики в устной и письменной форме, математическими знаниями и умениями, необходимыми для изучения школьных естественнонаучных дисциплин, продолжения образования и освоения избранной специальности на современном уровне;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, математического мышления и интуиции, творческих способностей, необходимых для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;

  • воспитание средствами математики культуры личности через знакомство с историей развития математики, эволюцией математических идей; понимания значимости математики для научно-технического прогресса.

Общая характеристика учебного предмета

При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Элементы комбинаторики, статистики и теории вероятностей», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:

систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;

расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления.

Общеучебные умения, навыки и способы деятельности

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

Результаты обучения

Результаты обучения представлены в требованиях к уровню подготовки выпускников и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие среднюю (полную) школу, и достижение которых является обязательным условием положительной аттестации ученика за курс средней (полной) школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние два компонента представлены отдельно по каждому из разделов содержания.



Содержание обучения

10 класс (70 часов)

  1. Действительные числа.Понятие натурального числа. Множества чисел. Свойства действительных чисел. Метод математической индукции. Перестановки. Размещения. Сочетания. Доказательство числовых неравенств. Делимость целых чисел. Сравнения по модулю m. Задачи с целочисленными неизвестными.

Основная цель – систематизировать известные и изучить новые сведения о действительных числах.

  1. Рациональные уравнения и неравенства .Рациональные выражения. Формулы бинома Ньютона, суммы и разности степеней. Деление многочленов с остатком. Алгоритм Евклида. Теорема Безу. Корень многочлена. Рациональные уравнения. Системы рациональных уравнений. Метод интервалов решения неравенств. Рациональные неравенства. Нестрогие неравенства. Системы рациональных неравенств.

Основная цель – сформировать умения решать рациональные уравнения и неравенства.

3. Корень степени n.Понятия функции и ее графика. Функция y = xn. . Понятие корня степени n. Корни четной и нечетной степеней. Арифметический корень. Свойства корней степени n. Функция y=√x. Корень степени n из натурального числа.

Основная цель – освоить понятия корня степени n и арифметического корня; выработать умение преобразовывать выражения, содержащие корни степени n.

4. Степень положительного числа.

Понятие и свойства степени с рациональным показателем. Предел последовательности. Свойства пределов. Бесконечно убывающая геометрическая прогрессия. Число e. Понятие степени с иррациональным показателем. Показательная функция.



Основная цель – усвоить понятии рациональной и иррациональной степеней положительного числа и показательной функции.

5. Логарифмы.

Понятие и свойства логарифмов. Логарифмическая функция. Десятичный логарифм (приближенные вычисления). Степенные функции.



Основная цель – освоить понятия логарифма и логарифмической функции, выработать умение преобразовывать выражения, содержащие логарифмы.

6. Простейшие показательные и логарифмические уравнения и неравенства.

Простейшие показательные и логарифмические уравнения. Уравнения, сводящиеся к простейшим заменой неизвестного. Простейшие показательные и логарифмические неравенства. Неравенства, сводящиеся к простейшим заменой неизвестного.



Основная цель – сформировать умение решать показательные и логарифмические уравнения и неравенства.

7. Синус и косинус угла.

Понятие угла и его меры. Определение синуса и косинуса угла, основные формулы для них. Арксинус и арккосинус. Примеры использования арксинуса и арккосинуса и формулы для них.



Основная цель – освоить понятия синуса и косинуса произвольного угла, изучить свойства функций угла: sin a и cos a.

8. Тангенс и котангенс угла.Определение тангенса и котангенса угла и основные формулы для них. Арктангенс и арккотангенс. Примеры использования арктангенса и арккотангенса и формулы для них.

Основная цель - освоить понятия тангенса и котангенса произвольного угла, изучить свойства функций угла: tg a и ctg a.

9. Формулы сложения.Косинус суммы (и разности) двух углов. Формулы для дополнительных углов. Синус суммы (и разности) двух углов. Сумма и разность синусов и косинусов. Формулы для двойных и половинных углов. Произведение синусов и косинусов. Формулы для тангенсов.

Основная цель – освоить формулы косинуса и синуса суммы и разности двух углов, выработать умение выполнять тождественные преобразования тригонометрических выражений с использованием выведенных формул.

10. Тригонометрические функции числового аргумента.

Функции y= sin x, y= cos x, y= tg x, y= ctg x.



Основная цель – изучить свойства основных тригонометрических функций и их графиков.

11. Тригонометрические уравнения и неравенства.

Простейшие тригонометрические уравнения. Тригонометрические уравнения, сводящиеся к простейшим заменой неизвестного. Применение основных тригонометрических формул для решения уравнений. Однородные уравнения. Простейшие тригонометрические неравенства. Неравенства, сводящиеся к простейшим заменой неизвестного. Введение вспомогательного угла. Замена неизвестного t=sinx+cosx.



Основная цель – сформировать умение решать тригонометрические уравнения и неравенства.

12. Вероятность события.

Понятие и свойства вероятности события.



Основная цель – овладеть классическим понятием вероятности события, изучить его свойства и научиться применять их при решении несложных задач.

13. Частота. Условная вероятность.

Относительная частота события. Условная вероятность. Независимые события.



Основная цель – овладеть понятиями частоты события и условной вероятности события, независимых событий; научить применять их при решении несложных задач.

14. Повторение.
11класс (70 часов)

  1. Функции и их графики.

Элементарные функции. Исследование функций и построение их графиков элементарными методами. Основные способы преобразования графиков. Графики функций, содержащих модули. Графики сложных функций.

Основная цель – овладеть методами исследования функций и построения их графиков.

2. Предел функции и непрерывность.

Понятие предела функции. Односторонние пределы, свойства пределов. Непрерывность функций в точке, на интервале, на отрезке. Непрерывность элементарных функций. Разрывные функции.



Основная цель – усвоить понятия предела функции и непрерывности функции в точке и на интервале.

3. Обратные функции.

Понятие обратной функции. Взаимно обратные функции. Обратные тригонометрические функции.



Основная цель – усвоить понятие функции, обратной к данной, и научить находить функцию, обратную к данной.

4. Производная.

Понятие производной. Производная суммы, разности, произведения и частного двух функций. Непрерывность функций, имеющих производную, дифференциал. Производные элементарных функций. Производная сложной функции. Производная обратной функции.



Основная цель – научить находить производную любой элементарной функции.

5. Применение производной.Максимум и минимум функции. Уравнение касательной. Приближенные вычисления. Теоремы о среднем. Возрастание и убывание функций. Производные высших порядков. Выпуклость графика функции. Экстремум функции с единственной критической точкой. Задачи на максимум и минимум. Асимптоты. Дробно-линейная функция. Построение графиков функций с применением производной. Формула и ряд Тейлора.

Основная цель – научить применять производную при исследовании функций и решении практических задач.

6. Первообразная и интеграл.

Понятие первообразной. Замена переменной и интегрирование по частям. Площадь криволинейной трапеции. Определенный интеграл. Приближенное вычисление определенного интеграла. Формула Ньютона-Лейбница. Свойства определенных интегралов. Применение определенных интегралов в геометрических и физических задачах. Понятие дифференциального уравнения. Задачи, приводящие к дифференциальным уравнениям.



Основная цель – знать таблицу первообразных (неопределенных интегралов) основных функций и уметь применять формулу Ньютона-Лейбница при вычислении определенных интегралов и площадей фигур.

7. Равносильность уравнений и неравенств.

Равносильные преобразования уравнений и неравенств.



Основная цель – научить применять равносильные преобразования при решении уравнений и неравенств.

8. Уравнения-следствия.

Понятие уравнения-следствия. Возведение уравнения в четную степень. Потенцирование логарифмических уравнений. Приведение подобных членов уравнения. Освобождение уравнения от знаменателя. Применение логарифмических, тригонометрических и других формул.



Основная цель – научить применять преобразования, приводящие к уравнению-следствию.

9. Равносильность уравнений и неравенств системам.

Решение уравнений с помощью систем. Уравнения вида f(α(x))=f(β(x)). Решение неравенств с помощью систем. Неравенства вида f(α(x))f(β(x)).



Основная цель – научить применять переход от уравнения (или неравенства) к равносильной системе.

10. Равносильность уравнений на множествах.

Возведение уравнения в четную степень. Умножение уравнения на функцию. Логарифмирование и потенцирование уравнений, приведение подобных членов. Применение некоторых формул.



Основная цель – научить применять переход к уравнению, равносильному на некотором множестве исходному уравнению.

11. Равносильность неравенств на множествах.Возведение неравенства в четную степень и умножение неравенства на функцию, потенцирование логарифмических неравенств, приведение подобных членов, применение некоторых формул. Нестрогие неравенства.

Основная цель – научить применять переход к неравенству, равносильному на некотором множестве исходному неравенству.

12. Метод промежутков для уравнений и неравенств.

Уравнения и неравенства с модулями. Метод интервалов для непрерывных функций.



Основная цель – научить решать уравнения и неравенства с модулями и применять метод интервалов для решения неравенств.

13. Использование свойств функций при решении уравнений и неравенств.

Использование областей существования, неотрицательности, ограниченности, монотонности и экстремумов функции, свойств синуса и косинуса при решении уравнений и неравенств.



Основная цель – научить применять свойства функций при решении уравнений и неравенств.

14. Системы уравнений с несколькими неизвестными.

Равносильность систем. Система – следствие. Метод замены неизвестных. Рассуждения с числовыми значениями при решении систем уравнений.



Основная цель- освоить разные способы решения систем уравнений с несколькими неизвестными.

15. Повторение курса алгебры и начал математического анализа за 10-11 классы.
Требования к уровню подготовки выпускников.

В результате изучения алгебры и начал анализа на базовом уровне ученик должен

знать/понимать1

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки;

  • идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;

  • значений идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

  • вероятностный характер различных процессов окружающего мира;

Алгебра

Числовые и буквенные выражения

уметь

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • применять понятия, связанные с делимостью целых чисел, при решении математических задач;

  • находить корни многочленов с одной переменной, раскладывать многочлены на множители;

  • выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;

  • проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

Функции и графики

уметь

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций, выполнять преобразования графиков;

  • описывать по графику и по формуле поведение и свойства функций;

  • решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;

  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания и исследования с помощью функций реальных зависимостей, представления их графически, интерпретации графиков реальных процессов

Начала математического анализа

уметь

  • находить сумму бесконечно убывающей геометрической прогрессии;

  • вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных, используя справочные материалы;

  • исследовать функции и строить их графики с помощью производной;

  • решать задачи с применением уравнения касательной к графику функции;

  • решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;

  • вычислять площадь криволинейной трапеции;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа;

Уравнения и неравенства

уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;

  • доказывать несложные неравенства;

  • решать текстовые задачи с помощью составления уравнений и неравенств, и;

интерпретируя результат с учетом ограничений условия задачи;

  • изображать на координатной плоскости множество решений уравнений и неравенств с двумя переменными и их систем;

  • находить приближенные решения уравнений и их систем, используя графический метод;

  • решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • построения и исследования простейших математических моделей;

Элементы комбинаторики, статистики и теории вероятностей

уметь

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля;

  • вычислять вероятности событий на основе подсчета числа исходов (простейшие случаи);

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков;

  • анализа информации статистического характера.


6. Геометрия (140 ч.)

Пояснительная записка

Статус документа

Рабочая программа по геометрии составлена:

- на основе федерального компонента государственного стандарта среднего (полного) общего образования,

- примерной программы по математике основного общего образования,

- авторской программы «Геометрия, 10 – 11», авт. Л.С. Атанасян и др.,

-федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2015-2016 учебный год, учебника «Геометрия 10-11», Л.С.Атанасян и др., Москва, Просвещение, 2010г., с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования.

Материал, который в Обязательном минимуме содержания основных образовательных стандартов выделен курсивом, т. е. подлежит изучению, но не включается в требования к уровню подготовки выпускников, введен в основное содержание примерной программы без выделения курсивом.

Примерная программа выполняет две основные функции.



Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Общая характеристика учебного предмета

В курсе математики содержание образования, представленное в основной школе, развивается в следующих направлениях:

систематизация сведений о числах; формирование представлений о расширении числовых множеств от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;

развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;

систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;

расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях;

развитие представлении о вероятностно-статистических закономерностях в окружающем мире;

совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;

формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.

Цели

Изучение математики в старшей школе направлено на достижение следующих целей:

формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;

овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;

развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;

воспитание средствами математики культуры личности через знакомство с историей развития математики, эволюцией математических идей; понимания значимости математики для общественного прогресса.



Место предмета в базисном учебном плане

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения геометрии на этапе основного общего образования (10-11 классы) отводится не менее 100 часов из расчета 1,5 часа в неделю.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и даёт распределение учебных часов по разделам курса.

В данной рабочей программе на изучение геометрии в 11 классе отводится 64 ч (2 часа в неделю).



Общеучебные умения, навыки и способы деятельности

В ходе изучения математики учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

проведения доказательных рассуждений, логического обоснования выводов;

использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;

решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;

планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;

самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.



Результаты обучения

Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все выпускники, изучавшие курс математики по профильному уровню, и достижение которых является обязательным условием положительной аттестации ученика за курс средней (полной) школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние два компонента представлены отдельно по каждому из разделов содержания.

Очерченные стандартом рамки содержания и требований ориентированы на развитие учащихся и не должны препятствовать достижению более высоких уровней.

Основное содержание

Свойство биссектрисы угла треугольника. Решение треугольников. Вычисление биссектрис, медиан, высот, радиусов вписанной и описанной окружностей. Формулы площади треугольника: формула Герона, выражение площади треугольника через радиус вписанной и описанной окружностей.

Вычисление углов с вершиной внутри и вне круга, угла между хордой и касательной.

Теорема о произведении отрезков хорд. Теорема о касательной и секущей. Теорема о сумме квадратов сторон и диагоналей параллелограмма.

Вписанные и описанные многоугольники. Свойства и признаки вписанных и описанных четырехугольников.

Геометрические места точек.

Решение задач с помощью геометрических преобразований и геометрических мест.

Теорема Чевы и теорема Менелая.

Эллипс, гипербола, парабола как геометрические места точек.

Неразрешимость классических задач на построение.

Прямые и плоскости в пространстве. Основные понятия стереометрии (точка, прямая, плоскость, пространство). Понятие об аксиоматическом способе построения геометрии.

Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная к плоскости. Угол между прямой и плоскостью.

Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства.

Двугранный угол, линейный угол двугранного угла.

Расстояние от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Параллельное проектирование. Ортогональное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур. Центральное проектирование.

Многогранники. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призмы. Правильная призма. Параллелепипед. Куб.

Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде.

Понятие о симметрии в пространстве (центральная, осевая, зеркальная).

Сечения многогранников. Построение сечений.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения, параллельные основанию.

Шар и сфера, их сечения. Эллипс, гипербола, парабола как сечения конуса.

Касательная плоскость к сфере. Сфера, вписанная в многогранник; сфера, описанная около многогранника.

Цилиндрические и конические поверхности.

Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам,

Компланарные векторы. Разложение по трем некомпланарным векторам.



Требования к уровню подготовки выпускников

В результате изучения математики на профильном уровне в старшей школе ученик должен



знать/понимать: (Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений)

• значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

• значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;

• идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;

• значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;

• возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;

• универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;

• различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;

• роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;

• вероятностный характер различных процессов и закономерностей окружающего мира.



Уметь:

• соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; различать и анализировать взаимное расположение фигур;



  • изображать геометрические фигуры и тела, выполнять чертеж по условию задачи;

  • решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат;

  • проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса;

  • вычислять линейные элементы и углы в пространственных конфигурациях, объемы и площади поверхностей пространственных тел и их простейших комбинаций;

  • применять координатно-векторный метод для вычисления отношений, расстояний и углов;

  • строить сечения многогранников и изображать сечения тел вращения.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления длин, площадей и объемов реальных объектов при решении практических задач, используя при необходимости справочники и вычислительные устройства.



10 КЛАСС( 70 ч.)

СОДЕРЖАНИЕ ОБУЧЕНИЯ

1. Введение

Предмет стереометрии. Аксиомы стереометрии. Некоторые следствия из аксиом.

Основная цель — познакомить учащихся с содержанием курса стереометрии, с основными понятиями и аксиомами, принятыми в данном курсе, вывести первые следствия из аксиом, дать представление о геометрических телах и их поверхностях, об изображении пространственных фигур на чертеже, о прикладном значении геометрии.

Изучение стереометрии должно базироваться на сочетании наглядности и логической строгости. Опора на наглядность — непременное условие успешного усвоения материала, и в связи с этим нужно уделить большое внимание правильному изображению на чертеже пространственных фигур. Однако наглядность должна быть пронизана строгой логикой. Курс стереометрии предъявляет в этом отношении более высокие требования к учащимся. В отличие от курса планиметрии здесь уже с самого начала формулируются аксиомы о взаимном расположении точек, прямых и плоскостей в пространстве, и далее изучение свойств взаимного расположения прямых и плоскостей проходит на основе этих аксиом. Тем самым задается высокий уровень строгости в логических рассуждениях, который должен выдерживаться на протяжении всего курса.



2. Параллельность прямых и плоскостей

Параллельность прямых, прямой и плоскости. Взаимное расположение двух прямых в пространстве. Угол между двумя прямыми. Параллельность плоскостей. Тетраэдр и параллелепипед.

Основная цель — сформировать представления учащихся о возможных случаях взаимного расположения двух прямых в пространстве (прямые пересекаются, прямые параллельны, прямые скрещиваются), прямой и плоскости (прямая лежит в плоскости, прямая и плоскость пересекаются, прямая и плоскость параллельны), изучить свойства и признаки параллельности прямых и плоскостей.

Особенность данного курса состоит в том, что уже в первой главе вводятся в рассмотрение тетраэдр и параллелепипед и устанавливаются некоторые их свойства. Это дает возможность отрабатывать понятия параллельности прямых и плоскостей (а в следующей главе также и понятия перпендикулярности прямых и плоскостей) на этих двух видах многогранников, что, в свою очередь, создает определенный задел к главе «Многогранники». Отдельный пункт посвящен построению на чертеже сечений тетраэдра и параллелепипеда, что представляется важным как для решения геометрических задач, так и, вообще, для развития пространственных представлений учащихся.

В рамках этой темы учащиеся знакомятся также с параллельным проектированием и его свойствами, используемыми при изображении пространственных фигур на чертеже.

3. Перпендикулярность прямых и плоскостей

Перпендикулярность прямой и плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью. Двугранный угол. Перпендикулярность плоскостей. Трехгранный угол. Многогранный угол.

Основная цель — ввести понятия перпендикулярности прямых и плоскостей, изучить признаки перпендикулярности прямой и плоскости, двух плоскостей, ввести основные метрические понятия; расстояние от точки до плоскости, расстояние между параллельными плоскостями, между параллельными прямой и плоскостью, расстояние между скрещивающимися прямыми, угол между прямой и плоскостью, угол между двумя плоскостями, изучить свойства прямоугольного параллелепипеда.

Понятие перпендикулярности и основанные на нем метрические понятия (расстояния, углы) существенно расширяют класс стереометрических задач, появляется много задач на вычисление, широко использующих известные факты из планиметрии.



4. Многогранники

Понятие многогранника. Призма. Пирамида. Правильные многогранники.

Основная цель — познакомить учащихся с основными видами многогранников (призма, пирамида, усеченная пирамида), с формулой Эйлера для выпуклых многогранников, с правильными многогранниками и элементами их симметрии.

С двумя видами многогранников — тетраэдром и параллелепипедом — учащиеся уже знакомы. Теперь эти представления расширяются. Многогранник определяется как поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело (его тоже называют многогранником). В связи с этим уточняется само понятие геометрического тела, для чего вводится еще ряд новых понятий (граничная точка фигуры, внутренняя точка и т. д.). Усвоение их не является обязательным для всех учащихся, можно ограничиться наглядным представлением о многогранниках.



Наряду с формулой Эйлера в этом разделе содержится также один из вариантов пространственной теоремы Пифагора, связанный с тетраэдром, у которого все плоские углы при одной вершине — прямые. Доказательство основано на формуле площади прямоугольной проекциимногоугольника, которая предварительно выводится.

5. Повторение. Решение задач
11 КЛАСС (70 ч.)

СОДЕРЖАНИЕ ОБУЧЕНИЯ

1. Векторы в пространстве

Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы.

Основная цель — закрепить известные учащимся из курса планиметрии сведения о векторах и действиях над ними, ввести понятие компланарных векторов в пространстве и рассмотреть вопрос о разложении любого вектора по трем данным некомпланарным векторам.

Основные определения, относящиеся к действиям над векторами в пространстве, вводятся так же, как и для векторов на плоскости. Поэтому изложение этой части материала является достаточно сжатым. Более подробно рассматриваются вопросы, характерные для векторов в пространстве: компланарность векторов, правило параллелепипеда сложения трех некомпланарных векторов, разложение вектора по трем некомпланарным векторам.



2. Метод координат в пространстве. Движения

Координаты точки и координаты вектора. Скалярное произведение векторов. Уравнение плоскости. Движения. Преобразование подобия.

Основная цель — сформировать умение учащихся применять векторно-координатный метод к решению задач на вычисление углов между прямыми и плоскостями и расстояний между двумя точками, от точки до плоскости.

Данный раздел является непосредственным продолжением предыдущего. Вводится понятие прямоугольной системы координат в пространстве, даются определения координат точки и координат вектора, рассматриваются простейшие задачи в координатах. Затем вводится скалярное произведение векторов, кратко перечисляются его свойства (без доказательства, поскольку соответствующие доказательства были в курсе планиметрии) и выводятся формулы для вычисления углов между двумя прямыми, между прямой и плоскостью. Дан также вывод уравнения плоскости и формулы расстояния от точки до плоскости.

В конце раздела изучаются движения в пространстве: центральная симметрия, осевая симметрия, зеркальная симметрия. Кроме того, рассмотрено преобразование подобия.

3. Цилиндр, конус, шар

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усеченный конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.

Основная цель — дать учащимся систематические сведения об основных телах и поверхностях вращения — цилиндре, конусе, сфере, шаре.

Изучение круглых тел (цилиндра, конуса, шара) и их поверхностей завершает знакомство учащихся с основными пространственными фигурами. Вводятся понятия цилиндрической и конической поверхностей, цилиндра, конуса, усеченного конуса. С помощью разверток определяются площади их боковых поверхностей, выводятся соответствующие формулы. Затем даются определения сферы и шара, выводится уравнение сферы и с его помощью исследуется вопрос о взаимном расположении сферы и плоскости. Площадь сферы определяется как предел последовательности площадей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани. В задачах рассматриваются различные комбинации круглых тел и многогранников, в частности описанные и вписанные призмы и пирамиды,



В данном разделе изложены также вопросы о взаимном расположении сферы и прямой, о сечениях цилиндрической и конической поверхностей различными плоскостями.

4. Объемы тел

Объем прямоугольного параллелепипеда. Объемы прямой призмы и цилиндра. Объемы наклонной призмы, пирамиды и конуса. Объем шара и площадь сферы. Объемы шарового сегмента, шарового слоя и шарового сектора.

Основная цель — ввести понятие объема тела и вывести формулы для вычисления объемов основных многогранников и круглых тел, изученных в курсе стереометрии.

Понятие объема тела вводится аналогично понятию площади плоской фигуры. Формулируются основные свойстваобъемов и на их основе выводится формула объема прямоугольного параллелепипеда, а затем прямой призмы и цилиндра. Формулы объемов других тел выводятся с помощью интегральной формулы. Формула объема шара используется для вывода формулы площади сферы.



5. Некоторые сведения из планиметрии

Углы и отрезки, связанные с окружностью. Решение треугольников. Теоремы Менелая и Чевы. Эллипс, гипербола и парабола.

Основная цель — расширить известные учащимся сведения о геометрических фигурах на плоскости; рассмотреть ряд теорем об углах и отрезках, связанных с окружностью, о вписанных и описанных четырехугольниках; вывести формулы для медианы и биссектрисы треугольника, а также формулы площади треугольника, использующие радиусы вписанной и описанной окружностей; познакомить учащихся с такими интересными объектами, как окружность и прямая Эйлера, с теоремами Менелая и Чевы, и, наконец, дать геометрические определения эллипса, гиперболы, параболы и вывести их канонические уравнения.

Изучение этих теорем и формул целесообразно совместить с рассмотрением тех или иных вопросов стереометрии:

• теоремы об углах и отрезках, связанных с окружностью, рассмотреть при изучении темы «Сфера и шар»;

• различные формулы, связанные с треугольником, — при изучении темы «Многогранники», в частности, теоремы Менелая и Чевы — в связи с задачами на построение сечений многогранников;

• сведения об эллипсе, гиперболе и параболе использовать при рассмотрении сечений цилиндрической и конической поверхностей.



6. Обобщающее повторение

Примечания.

1) При решении задач, связанных с сечением тетраэдра некоторой плоскостью, часто оказывается полезной теорема Менелая. Поэтому изучение п. 14 учебника «Задачи на построение сечений» целесообразно совместить с изучением теорем Менелая и Чевы (пп. 95 и 96).

2) В п. 58 введено понятие центрального подобия в пространстве. Рассмотрение этого понятия можно совместить с изучением п. 94, где с помощью центрального подобия (на плоскости) решена задача о прямой и окружности Эйлера для треугольника. Целесообразно начать с изучения п. 94, затем перейти к п. 58, а при рассмотрении вопросов, связанных со сферой (пп. 64—69), решить красивые задачи 814 и 815 о прямой и сфере Эйлера для тетраэдра. Вторая задача решается на основе первой, и при этом эффективно используется центральное подобие.

3) В пп. 72 и 73 учебника рассматриваются сечения цилиндрической и конической поверхностей. При этом используются свойства эллипса, гиперболы и параболы, которые описаны в пп. 97—99. Поэтому перед изучением пп. 72 и 73 следует ознакомиться с содержанием пп. 97—99.

4) Другие теоремы и формулы, включенные в главу «Некоторые сведения из планиметрии», могут быть изучены по мере надобности при рассмотрении тех или иных вопросов стереометрии. Так, пп. 85—89, в которых рассматриваются углы и отрезки, связанные с окружностью, а также вписанный и описанный четырехугольники, целесообразно рассмотреть в связи с темой «Сфера и шар», а пп. 90—94, относящиеся к треугольнику, — в связи с темой «Многогранники».


Каталог: sveden -> education
education -> Лекция №1 Тема: Гемостаз
education -> Абсцессы брюшной полости
education -> Занятие №24. Рубежный контроль тестирование. Тесты II модуль
education -> Беременная женщина М. обратилась в генетическую консультацию. Она сообщила, что её брат по матери (отцы разные) болен фенилкетонурией. Её дочь от первого брака здорова
education -> Тесты по сосудистой хирургии: заболевания аорты и ее ветвей высокая «перемежающаяся хромота»
education -> Лекция амины план
education -> Функциональные производные карбоновых кислот
education -> Лекция №1 Актуальность проблемы


Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   10   ...   22




База данных защищена авторским правом ©vossta.ru 2022
обратиться к администрации

    Главная страница