Программа учебной дисциплины "Устройство и конструкция автомобиля" предназначена для реализации



страница6/10
Дата28.11.2017
Размер1.88 Mb.
ТипОсновная образовательная программа
1   2   3   4   5   6   7   8   9   10
тема: система питания ДВС.

План:

1. Общее устройство и работа системы питания.

2. Простейший карбюратор.

3.Режимы работы двигателя.

4. Система питания двигателя от газобаллонной установки
1. Общее устройство и работа системы питания.
Система питания карбюраторного двигателя предназначена для приготовления в определенной пропорции из топлива и воздуха горючей смеси, подачи в цилиндры двигателя и отвода из них отработавших газов.

В систему питания двигателя автомобиля ЗИЛ-130 (рис. 64) входят топливный бак 10, топливопровод 7 от бака к фильтру-отстойнику 14 и к топливному насосу 19, карбюратор 3, воздушный фильтр 2, приемные трубы 16, глушитель 15, выпускная труба 13 глушителя. В систему питания входят также фильтр 18 тонкой очистки топлива, установленный между топливным насосом и карбюратором, впускной трубопровод, на котором укреплен карбюратор, и выпускной трубопровод.

Во время работы двигателя топливо из бака после предварительной очистки в фильтре-отстойнике насосом 19 поедается к карбюратору. При такте впуска в цилиндре двигателя создается разрежение, передающееся в карбюратор и в установленный на нем воздушный фильтр. Очищенный воздух проходит в смесительную, камеру, где из жиклеров подается топливо. Испаряющееся топливо перемешивается с воздухом, образуя горючую смесь. Из карбюратора по впускному трубопроводу горючая смесь поступает в цилиндры двигателя. Газы, образовавшиеся после быстрого сгорания рабочей смеси в цилиндре, расширяются, давят на поршень, и он опускается вниз, совершая рабочий ход. После рабочего хода отработавшие газы через открытый выпускной клапан вытесняются поршнем в выпускной трубопровод 17. Затем они поступают в приемные трубы 16 глушителя, выпускную трубу 13 и в атмосферу. Топливо наливают в бак через ГОРЛОВИНУ, закрываемую крышкой 11. Количество топлива, находящегося в баке, контролируют при помощи датчика 9 и указателя 8 уровня топлива.

2. Простейший карбюратор.
Процесс приготовления горючей смеси определенного состава из мелкораспыленного топлива и воздуха, происходящий вне цилиндров двигателя, называют карбюрацией, а прибор, в котором происходит этот процесс, — карбюратором.

Принцип работы простейшего карбюратора аналогичен принципу работы пульверизатора и состоит в том, что жидкость под действием разрежения вытекает из распылителя (трубки) и, смешиваясь с воздухом, образует горючую смесь. Простейший карбюратор (рис. 65, а) состоит из поплавковой камеры 8, диффузора 3, распылителя 4 с жиклером 7, смесительной камеры б и дроссельной заслонки;' 5. В поплавковой камере находится пустотелый поплавок 9, шарнирно соединенный с осью и действующий на игольчатый клапан 10. Топливо подается в поплавковую камеру насосом по трубопроводу 1. Отверстие 2 соединяет поплавковую камеру с окружающим воздухом, поэтому в камере постоянно поддерживается атмосферное давление. Поплавковая камера карбюратора соединена со смесительной камерой б распылителем 4, в котором установлен жиклер 7.

Жиклер представляет собой металлическую пробку с небольшим калиброванным отверстием, через которое в единицу времени проходит определен порция топлива. Выходной конец распылителя устанавливают в самом узком месте диффузора — в горловине.

Рис. 65 - Схема впускной системы карбюраторного двигателя и характеристики карбюраторов:


а — схема впускной системы с простейшим карбюратором; б — характеристики карбюраторов; 1 — трубопровод; 2 — отверстие в поплавковой камере; 3 — диффузор; 4 — распылитель; 5 — дроссельная заслонка; 6 — смесительная камера; 7 — жиклер; 8 — поплавковая камера; 9 — поплавок; 10 — игольчатый клапан; 11- простейший карбюратор; 12 — идеальный карбюратор.
Простейший карбюратор работает следующим образом. При наполнении топливом поплавковой камеры 8 поплавок 9 постепенно всплывает. При определенном уровне топлива игольчатый клапан 10 перекрывает отверстие в подводящем трубопроводе, и поступление топлива в поплавковую камеру прекращается. При такте впуска поршень в двигателе перемещается в НМТ, и в цилиндре создается разрежение, передающееся в смесительную камеру карбюратора. Разрежение в этой камере зависит от положения дроссельной заслонки: с прикрытием заслонки разрежение уменьшается, а с открытием увеличивается. Пока двигатель не работает, в поплавковой камере и в распылителе топливо находится на одном уровне, причем верхний конец распылителя располагается несколько выше уровня топлива (на 2 — 3 м).

Во время работы двигателя поступающий в карбюратор воздух проходит через узкое сечение диффузора, в результате чего скорость воздуха в нем, а следовательно, и разрежение возрастают. Создается перепад давлений между поплавковой камерой и диффузором, благодаря чему топливо начинает фонтанировать из распылителя. Топливо распиливается, перемешивается с воздухом, частично испаряется и в виде горючей смеси поступает в цилиндры двигателя. С изменением положения дроссельной заслонки значительно изменяется состав горючей смеси, приготовляемой простейшим карбюратором.

На рис. 65, б представлены характеристики простейшего 1 и идеального II карбюраторов. Они показывают изменение состава горючей смеси карбюратора в зависимости от нагрузки (от положения дроссельной заслонки — в % открытия). По мере открытия дроссельной заслонки в простейшем карбюраторе горючая смесь все больше обогащается, причем только в двух случаях (точки А и Б) состав смеси совпадает с составом горючей смеси, приготовляемой идеальным карбюратором (при полностью открытой дроссельной заслонке и при некотором промежуточном е положении). Таким образом, основным недостатком простейшего карбюратора является невозможность приготовления горючей смеси нужного состава.

Работу двигателя на всех режимах, кроме его работы с малой частотой вращения на режиме холостого хода, обеспечивает главная дозирующая система. Для образования горючей смеси эта система подает наибольшую порцию топлива. При рассмотрении работы простейшего карбюратора было установлено, что с увеличением открытия дроссельной заслонки количество вытекающего из распылителя топлива возрастает быстрее, чем количество воздуха, проходящего через диффузор, т.е. горючая смесь обогащается тем больше, чем больше открывается дроссельная заслонка. Предотвращение обогащения горючей смеси с увеличением открытия дроссельной заслонки называют компенсацией е состава. В карбюраторах применяют следующие способы компенсации смеси: регулирование разрежения в диффузоре; установка двух жиклеров — главного и компенсационного; пневматическое торможение истечения топлива (эмульгирование топлива в главной дозирующей системе). Последний способ компенсации смеси получил наибольше распространение в карбюраторах. При любом способе компенсации главная дозирующая система обеспечивает приготовление карбюратором при работе двигателя на средних нагрузках обедненной, т.е. экономичной горючей смеси.

Компенсация горючей смеси пневматическим торможением истечения топлива. Топливо из поплавковой камеры 6 (рис. 66, а) поступает через главный жиклер 7 в колодец 4 и далее через эмульсионную трубку 5 с отверстиями в распылитель 1. Трубка 5 сообщается с воздухом через жиклер З. При создании разрежения в диффузоре 9 из распылителя начинает фонтанировать топливо, уровень его в колодце понижается, и открывается верхнее отверстие в эмульсионной трубке. Воздух, выходящий из трубки 5, смешивается с топливом, и эмульсия подается через распылитель 1 в смесительную камеру карбюратора.


Рис. 66 - Схемы систем и элементов карбюратора:
а — схема системы компенсации смеси пневматическим торможением истечения топлива; б — схема действия воздушной заслонки; в — схема системы холостого хода; 1 — распылитель; 2 — воздушная заслонка; 3 — воздушный жиклер; 4 — топливный колодец; 5 — трубка; 6 — поплавковая камера; 7 — главный жиклер; 8 — дроссельная заслонка; 9 — диффузор; 10 — клапан; 11 — пружина; 12 — смесительная камера; 13 — отверстие в поплавковой камере; 14 — топливный жиклер системы холостого хода; 15 — канал системы холостого хода; 16 и 18 — отверстия системы холостого хода; 17 — регулировочный винт.
При увеличении открытия дроссельной заслонки возрастает расход топлива из колодца, и в трубке 5 открывается больше• воздушных отверстий. Воздух, поступающий в распылитель, уменьшает разрежение у главного жиклера и замедляет (тормозит) истечение из него топлива, что и необходимо для обеднения горючей смеси. Создание экономичной смеси в этом случае возможно лишь при правильно м подборе диаметров воздушного 3 и главного 7 (топливного) жиклеров. Такой способ компенсации горючей смеси использован в карбюраторах К•126Б, К-126Г, К-88АМ и др.
Основными режимами работы автомобильного двигателя являются пуск двигателя, холостой ход и малые нагрузки, средние нагрузки, полные нагрузки и резкие переходы с малых нагрузок на большие. При пуске двигателя необходима очень богатая смесь (сх=0,2+-0,6), так как частота вращения коленчатого вала мала, топливо плохо испаряется и часть его конденсируется на холодных стенках цилиндра.

Работа двигателя на режимах холостого хода и малой нагрузки возможна при сх=0,7 +-0,8. Горючая смесь, поступающая в цилиндры двигателя, загрязняется остаточными газами, поэтому обогащение смеси улучшает е воспламеняемость и способствует устойчивой работе двигателя.

Автомобильный двигатель большую часть времени работает на режиме средних нагрузок, т.е. с не полностью открытой дроссельной заслонкой. Для этого режима необходима обедненная смесь с коэффициентом избытка воздуха сх= 1,05 +-1,15 (экономичная смесь), обеспечивающая экономичную работу двигателя.

При резком открытии дроссельной заслонки возможно обеднение горючей смеси, так как увеличивается количество поступающего воздуха. Карбюратор должен иметь устройство, предотвращающее это обеднение. С полной нагрузкой двигатель работает при разгоне автомобиля, движении с максимальной скоростью и преодолении крутых подъемов или тяжелых участков дороги. В этом случае для получения наибольшей мощности двигателя карбюратор должен приготовлять обогащенную смесь с коэффициентом сх=0,85 +-0,95.

Пуск двигателя, особенно в холодную погоду, затруднен, так как топливо плохо испаряется. Чтобы к моменту воспламенения рабочей смеси в цилиндре находилось достаточное количество паров топлива, смесь необходимо сильно обогатить. Такое обогащение смеси обеспечивают с помощью воздушной заслонки 2 (рис. 66,6), установленной в воздушном патрубке карбюратора. Воздушной заслонкой управляет водитель из кабины при помощи тяги и кнопки.

При пуске двигателя заслонку прикрывают. В этом случае при вращении коленчатого вала в смесительной камере 12 создается значительное разрежение, и топливо поступает из распылителя 1 карбюратора. При пуске холодного двигателя, когда масло густое, нельзя допускать большую частоту вращения коленчатого вала. Поэтому дроссельную заслонку 8 прикрывают. После пуска двигателя его прогревают при малой частоте вращения и воздушную заслонку постепенно открывают, иначе в двигатель будет поступать очень богатая смесь.

На воздушной заслонке установлен клапан 10, удерживаемый в закрытом положении слабой пружиной 11. При первых вспышках в цилиндрах двигателя, чтобы не было сильного обогащения смеси, клапан под действием давления воздуха открывается. Таким образом, при пуске двигателя через клапан 10 проходит необходимое количество воздуха.
4. Система питания двигателя от газобаллонной установки
Выпускаемые ранее автомобили с газобаллонными установками имели универсальные двигатели, работающие на газе и бензине. Такая универсальность двигателей не позволяла полностью использовать преимущества газообразного топлива. В настоящее время некоторые заводы страны вновь вернулись к производству и испытанию газобаллонных автомобилей, при использовании которых значительно снижается потребность автомобильного транспорта в жидком топливе. Двигатели газобаллонных автомобилей оснащены как газовой, так и бензиновой аппаратурой; последняя является аварийной (резервной). В настоящее время для работы на сжиженном газе выпускаются газобаллонные автомобили ГАЗ-52-07, ГАЗ-52-09, ГАЗ-53-07, ГАЗ-24-07 и ЗИЛ-138, на сжатом газе ГАЗ-52-27, ГАЗ-53-27 и ЗИЛ-138А.

Пуск автомобильного двигателя, работающего на газе, так же как и на бензине, происходит при помощи стартера. Перед пуском двигателя выполняют следующее: проверяют наличие воды, масла и бензина в соответствующих системах; осматривают газовую аппаратуру с арматурой и убеждаются в полной ее исправности и герметичности; проверяют наличие газа в баллоне; открывают паров ой вентиль баллона при пуске холодного двигателя или жидкостный вентиль при пуске прогретого двигателя; открывают магистральный вентиль и по показаниям манометров проверяют наличие газа в баллоне и в первой ступени редуктора. Пуск прогретого двигателя, находящегося в исправном состоянии, обычно происходит с первых же попыток. Для этого повертывают ключ зажигания и стартера в положение пуска и держат до тех пор, пока двигатель не пустится (но не более 5 с). Затем ключ переводят в первое положение (включено зажигание).

Пуск холодного двигателя при умеренной температуре. Открывают магистральный и расходный (паровой) вентили. Для ускорения пуска заполняют газом газопровод от редуктора до смесителя принудительным открытием клапана второй ступени, кратковременно нажимая на стержень штока мембраны второй ступени. Вытягивают ручку управления дроссельными заслонками на половину длины хода, т. е. приоткрывают заслонки выключают сцепление и пускают двигатель поворотом ключа включения зажигания.

Стартер включают не более чем на 5 с интервалами не менее 10-15 с. После пуска двигателя его прогревают на малой частоте вращения. Как только температура охлаждающей жидкости достигнет 60 ОС, открывают расходный вентиль жидкостной фазы и закрывают расходный вентиль паров ой фазы. Недопустима длительная работа двигателя на паров ой фазе, так как происходит интенсивное испарение легких фракций сжиженного газа. При этом снижается температура жидкости в баллоне, он покрывается инеем, ухудшается теплообмен с окружающей средой и т. д.

После прогрева двигателя кнопку ручного управления дроссельными заслонками вдавливают в щиток. Не рекомендуется при пуске двигателя прикрывать воздушную заслонку, так как это приводит к переобогащение газовоздушной смеси, а следовательно, и к затруднению пуска двигателя.

Остановка двигателя. Останавливают двигатель выключением зажигания. При непродолжительной остановке двигателя магистральный вентиль можно не закрывать. При длительной остановке его закрывают и вырабатывают газ из системы, находящейся между магистральным вентилем и смесителем. Перед длительной стоянкой автомобиля закрывают расходные вентили жидкостной и паровой фаз и продолжают работу двигателя до остановки. Затем закрывают магистральный вентиль.

Двигатель кратковременно может работать на бензине, но нельзя переходить с одного топлива на другое при работающем двигателе. Для перевода двигателя с газа на бензин выполняют следующее: закрывают вентили и продолжают работу на газе до остановки двигателя; открывают бензиновый краник, расположенный на фильтре тонкой очистки топлива; при помощи рычага ручной подкачки топливного насоса заполняют поплавковую камеру карбюратора; открывают отверстие (выходное) карбюратора, для чего повертывают заглушку и закрепляют ее гайкой; соединяют тягу с рычагом дроссельной заслонки карбюратора; закрывают воздушную заслонку смесителя; обычным способом пускают двигатель. При переводе двигателя с работы на бензине на работу на газе эти операции выполняют в обратной последовательности.

Основные требования техники безопасности. При эксплуатации автомобиля на сжиженном газе обязательна регулярная, тщательная проверка герметичности газовой установки и немедленное устранение причин, вызывающих утечки газа. Значительные утечки обнаруживают на слух или по обмерзанию соединения, про пускающего газ. Небольшие утечки определяют при помощи мыльного раствора или машинного масла. Бутан-пропановые газы, выходя на воздух в виде жидкости, интенсивно испаряются и отбирают теплоту из окружающей среды. Попадание струи сжиженного газа на тело человека может вызвать обмораживание, поэтому такая возможность должна быть обязательно исключена.


лекция № 5

тема: система питания дизельных двигателей.

план:

1. Смесеобразование в дизелях.

2. Устройство системы питания дизельных двигателей
1. Смесеобразование в дизелях.
Время, отводимое на процесс смесеобразования в дизелях, очень мало. Да и топливо, поступающее в нагретый сжатый воздух, воспламеняется не сразу. Между началом его подачи и моментном воспламенения проходит некоторый промежуток времени, называемый периодом задержки воспламенения. В течение этого периода топливо перемешивается с воздухом, испаряется и нагревается до самовоспламенения. Период задержки воспламенения зависит от сорта топлива, его физических свойств и от конструктивных особенностей двигателя. Чем значительнее период задержки воспламенения, тем больше количество топлива накапливается в камере сгорания. После воспламенения оно быстро сгорает, что приводит к резкому увеличению давления газов на поршневую группу. Двигатель работает жестко, его стуками, а его детали подвергаются интенсивному изнашиванию. Мелкое распушивание топлива в завихренный воздух приводит к уменьшению периода задержки воспламенения. С увеличением частоты вращения коленчатого вала повышаются давление и температура в конце, что уменьшает период задержки воспламенения топлива. Следовательно, для быстроходных дизелей необходимо использовать топливо с повышенным метановым числом, так как такое топливо скорее воспламеняется и быстрее сгорает. Особенностью системы питания дизеля является раздельная подача воздуха и топлива в цилиндры.

Смесеобразование в дизелях происходит непосредственно в камере сгорания. В сжатый горячий воздух впрыскивается определенная порция топлива. Задача смесеобразовательного процесса заключается в том, чтобы мелко распылить и хорошо перемешать определенную дозу топлива с воздухом. Смесеобразование происходит почти одновременно с процессом сгорания. Если в цилиндр подавать на одну часть топлива теоретически необходимое количество воздуха, достаТ9чное для полного сгорания топлива, то двигатель будет работать с дымлением. Объясняется это тем, что равномерно распределить мелкие частицы топлива в воздухе по всей камере сгорания дизеля очень трудно. Чтобы топливо полностью сгорело, воздуха приходится подавать в цилиндры значительно больше, чем теоретически необходимо. Однако увеличение коэффициента избытка воздуха ухудшает экономические показатели дизеля. Лучше, если сгорание топлива происходит при меньшем значении коэффициента избытка воздуха, так как в этом случае полнее будет использована теплота сгоревшего топлива. Минимальное значение коэффициента избытка воздуха, соответствующее бездымной работе дизеля с неразделенной камерой сгорания, равно 1,6-1,7, а с вихревой камерой 1,3-1,4.

Другой особенностью дизеля является то, что в цилиндр фактически поступает почти одно и то же количество воздуха, независимо от нагрузки. При малой нагрузке в цилиндре всегда имеется много воздуха и топливо сгорает полностью. Коэффициент избытка воздуха в этом случае имеет большую величину. При увеличении нагрузки возрастает подача топлива, уменьшается значение коэффициента избытка воздуха и ухудшается процесс сгорания топлива.

Для улучшения смесеобразования в дизелях применяют неразделенные камеры сгорания и разделенные (на два объема) камеры сгорания (вихревые и предкамеры). В неразделенные камеры сгорания (они расположены в днище поршня) топливо подают под большим давлением 50-100 МПа. Это позволяет получить тонкое распушивание топлива, хорошее перемешивание его с воздухом, достаточную полноту сгорания, и двигатель будет развивать наибольшую мощность. В разделенных камерах сгорания создается интенсивное завихрение воздуха, что способствует лучшему смесеобразованию и позволяет подавать топливо через форсунки с меньшим давлением 12,5-18,5 МПа.

Для подачи топлива из топливного бака через фильтры к насосам высокого давления в настоящее время применяют подкачивающие насосы поршневого типа (дизели ЯМЗ-23б и КамАЗ-740). Насос (рис. 92), расположенный между фильтрами грубой и тонкой очистки топлива, состоит из следующих деталей: корпуса 21; поршня 20 с пружиной 22, удерживаемой пробкой 23; толкателя 4 с осью 5 и роликом б; пружины 3 толкателя; штока 2; впускного 19 и выпускного 7 клапанов с пружинами соответственно 18 и 8. В корпус насоса ввернут цилиндр 12 насоса ручной подачи топлива, размещенный над впускным клапаном.


Рис. 92 - Топливоподкачивающий насос поршневого типа:
а - конструкция; б - схема перепуска топлива; в - схема постyпления топлива в насос и подачи его к фильтру тонкой очистки; 1 - втулка; 2 - шток толкателя; 3, 8, 18 и 22 - пружины; 4 - толкатель; 5 - ось ролика; 6 – ролик; 7 - выпускной клапан; 9 и 16 - прокладки; 10 и 23 - пробки; 11 - корпус цилиндра; 12 - цилиндр; 13 - поршень; 14 - шток поршня; 15 - рукоятка; 17 - втулка цилиндра ручного насоса; 19 - впускной клапан; 20 - поршень; 21 - корпус насоса; 24 - эксцентрик; 25 и 26 - канал; А - полость над поршнем; Б - полость под поршнем.
Втулка 1 штока 2 ввернута в корпус насоса. Эти детали, изготовленные с очень большой точностью, составляют прецизионную пару, раскомплектование которой недопустимо.

Топливоподкачивающий насос имеет два привода: ручной и механический. Ручным приводом пользуются для заполнения топливом фильтров, топливопроводов и удаления из топливной системы воздуха. Если возникают трудности с пуском дизеля (например, в систему попал воздух), то необходимо также воспользоваться ручным приводом. При перемещении поршня 13 рукояткой 15 вверх в цилиндре 12 создается разрежение, открывается впускной клапан 19, и топливо поступает внутрь цилиндра. При перемещении поршня 13 вниз он давит на топливо, впускной клапан закрывается, а выпускной клапан 7 открывается, и топливо подается к фильтру тонкой очистки. После прокачки системы ручным насосом поршень 13 опускают вниз и навертывают рукоятку 15 на резьбовой хвостовик цилиндра; поршень плотно прижимается к прокладке 16.

При работе двигателя действует механический привод топливоподкачивающего насоса. Вращающийся эксцентрик 24 набегает на ролик 6 толкателя 4, вследствие чего сжимается пружина 3 и перемещается шток 2 (рис. 92,6) с поршнем 20, сжимая пружину 22. Под действием давления топлива в полости А над поршнем впускной клапан 19 прижимается к седлу, а выпускной клапан 7 открывается; топливо перетекает по перепускному каналу 26 в полость Б под поршень 20.

Когда эксцентрик сходит с ролика толкателя, пружина 3 возвращает толкатель в исходное положение. Одновременно пружина 22, разжимаясь, перемещает поршень 20 в обратную сторону. Над поршнем в полости А создается разрежение, а под поршнем в полости Б повышенное давление. Выпускной клапан 7 садится на седло, и топливо из полости Б по каналам насоса и трубопроводу поступает к фильтру тонкой очистки (рис. 92, в). Вследствие наличия разрежения над поршнем открывается впускной клапан 19, и топливо заполняет полость А. При следующем набегании эксцентрика на ролик толкателя рассмотренные процессы повторяются.

Топливоподкачивающий насос подает топлива больше, чем необходимо для работы двигателя. Если ход поршня насоса будет все время постоянным, то давление в топливопроводе сильно возрастет. При уменьшении расхода топлива двигателем давление в полости Б повышается, и сжатая пружина не может преодолевать противодавление топлива. Вследствие этого ход поршня уменьшается и соответственно снижается подача топлива насосом. Толкатель 4 при этом свободно перемещается в обе стороны. По мере увеличения расхода топлива двигателем давление в полости Б уменьшается, ход поршня увеличивается, и подача топлива насосом возрастает.

В топливной системе дизеля КамАЗ-740 имеются два топливоподкачивающих H~coca подобного типа, лишь незначительно отличающиеся конструктивно (см. рис. 89,6).

Насос подает через форсунки в камеру сгорания необходимые порции топлива в строго определенные моменты. По принципу действия топливные насосы, применяемые на дизелях, относятся к золотниковому типу с постоянным ходом плунжера и регулированием конца подачи топлива. Число секций топливного насоса соответствует числу цилиндров двигателя. Каждая секция обслуживает один цилиндр. Топливный насос дизеля ЯМЗ-236 имеет 'шесть секций, а топливный насос дизеля КамАЗ-740 - восемь секций, объединенных в общем корпусе.

Топливные насосы высокого давления дизелей ЯМЗ-236 и КамАЗ-740 расположены между рядами цилиндров и приводятся в действие от зубчатых колес распределительного вала (см. рис. 20 и 22). На одном конце вала привода топливного насоса установлено зубчатое колесо, а другой конец вала соединен.



Рис. 93 - Топливный насос высокого давления дизеля ЯМЗ-236:


1 - автоматическая муфта опережения впрыскивания топлива; 2 - гайка; 3 ~ шпонка; 4 - втулка; 5 - винт-ограничитель; 6 - рейка; 7 - перепускной клапан; 8 - корпус насоса; 9 - втулка плунжера; 10 - плунжер; 11 - ниппель; 12 и 29 - пробки; 13 - сапун; 14 - корпус регулятора; 15 - кулачковый вал; 16 - самоподжимной сальник; 17 - конический роликоподшипник; 18 - топливоподкачивающий насос; 19 - кулачок; 20 - регулировочная прокладка; 21 - крышка подшипника; 22 - указатель уровня масла; 23 - крышка; 24 - винт крепления крышки; 25 - верхняя тарелка пружины; 26 - зубчатый венец; 27, 37 и 45-винты: 28 ~,)(аналотвода топлива; 30 - штуцер; 31 - упор клапана; 32 - колпачковая гайка; 33 - пружина нагнетательного клапана; 34 -нагнетательный клапан; 35 - седло нагнетательного клапана; 36 - канал подвода топлива; 38 - поворотная втулка; 39 - пружина; 40 - нижняя опорная тарелка пружины; 41 - регулировочный болт; 42 - контргайка; 43 - толкатель; 44 - ролик толкателя; 46 - промежуточная опора кулачкового вала.
За два оборота коленчатого вала кулачковый вал насоса делает один оборот, и топливо подается во все цилиндры.

На корпусе 8 (рис. 93) топливного насоса высокого давления дизеля ЯМЗ-236 укреплен топливоподкачивающий насос 18. Автоматическая муфта 1 опережения впрыскивания топлива и регулятор частоты вращения коленчатого валобъединены с насосом в один агрегат. Кулачковый вал 15 насоса вращается на конических роликоподшипниках 17, выходные концы вала уплотнены самоподжимными сальниками 16. Горизонтальная перегородка делит корпус на две части: верхнюю и нижнюю. В нижней части расположены кулачковый вал 15 и толкатели 43, а в верхней - плунжерные пары. В горизонтальной перегородке есть шесть отверстий и пазы для установки и направления движения толкателей. Кулачковый вал приводит в движение плунжеры 10 через ролики 44 толкателей 43 с регулировочными болтами 41. В нижнюю часть корпуса насоса наливают масло через отверстие, закрытое сапуном 13, уровень которого контролируют указателем 22.

Плунжер 10 и втулка 9 являются основными деталями отдельной секции насоса. Соединенные вместе, они' образуют плунжерную пару. Плунжер имеет диаметр 9 мм и ход 10 мм. Для создания высокого давления зазор между плунжером и втулкой не должен превышать 0,0015-0,0020 мм. Положение втулки в насосе фиксируется стопорным винтом 27. В верхней части втулки 2 (рис. 94) имеются впускное 1 и перепускное 13 отверстия. Плунжер может перемещаться внутри втулки в вертикальном направлении и повертываться при помощи двух направляющих выступов, входящих в пазы поворотной втулки 38 (см. рис. 93). Последняя, в свою очередь, поворачивается закрепленным на ней зубчатым венцом 26, находящимся в зацеплении с рейкой 6. В продольный паз рейки входит стопорный винт 37, определяющий ее положение.

На головке плунжера 3 профрезерованы две спиральные канавки 11 (см. рис. 94, а). При наличии спиральных канавок давление топлива с обеих сторон плунжера одинаковое (во время подачи топлива), и долговечность секций насоса увеличивается.

На нижнем конце плунжера сделана кольцевая проточка для опорной тарелки 40 (см. рис. 93) пружины 39. Другой конец пружины упирается в верхнюю тарелку 25, установленную в кольцевой выточке корпуса. В верхней части каждой секции насоса 1шернут. штуцер 30 с седлом 35 нагнетательного клапана 34, пружиной 33 и упором 31 клапана. От штуцера 30 через ниппель 11 топливо поступает в топливопровод, ведущий к форсунке. Плунжер, втулка, нагнетательный клапан и его седло из гот 00вленыс высокой точностью из высококачественной стали, т. е. являются прецизионными парами, и раскомплектовывать их нельзя. Для выпуска воздуха из насоса служит отверстие, закрываемое пробкой 29
лекция №6



Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   10


База данных защищена авторским правом ©vossta.ru 2019
обратиться к администрации

    Главная страница