Республики казахстан



страница1/10
Дата09.05.2018
Размер1.77 Mb.
ТипСамостоятельная работа
  1   2   3   4   5   6   7   8   9   10


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РЕСПУБЛИКИ КАЗАХСТАН

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени ШАКАРИМА города СЕМЕЙ



Документ СМК 3 уровня

УМКД

УМКД 042-18-10.1.12/03-2014



УМКД

Учебно-методические материалы по дисциплине «Химия»



Редакция № 2 от 11.09.2014г.


УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

ДИСЦИПЛИНЫ
«Химия»
для специальности 5В071200 – «Машиностроение»
УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Семей


2014

Содержание


  1. Глоссарий

  2. Лекции

  3. Лабораторные занятия

  4. Самостоятельная работа обучающихся



  1. Глоссарий



Аллотропия – это свойство атомов одного вида образовывать несколько простых веществ, различных по строению и свойствам.

Атомная орбиталь – это часть пространства, окружающего атомное ядро, в котором вероятность нахождения данного электрона максимальная (90%).

Амфотерность – это способность вещества проявлять кислотные и основные свойства.

Анод – это электрод, на котором протекает окисление.

Валентность – это способность атомов элементов образовывать химические связи с атомами других элементов.

Волновая функция – это амплитуда трехмерной электронной волны или амплитуда вероятности присутствия данного электрона в данной области пространства.

Водородный показатель (рН) – величина, характеризующая концентрацию ионов водорода в водном растворе, численно равна отрицательному десятичному логарифму активности водородных ионов в растворе.

Восстановитель – это частицы (атомы, молекулы, ионы), отдающие электроны.

Гальванические элементы – это химические источники тока, представляющие устройства из двух электродов в которых энергия самопроизвольно протекающей ОВР преобразуется в электрическую энергию.

Гомогенная система – это реакции при котором исходные реагенты и продукты реакции находятся в одной фазе.

Гидролиз – это процесс разложения соединения водой.

Диполь – это молекула, в которой не совпадают центры положительного и отрицательного зарядов.

Изотопы – это разновидности атомов одного и того же элемента, отличающие друг от друга массой ядра; ядра таких элементов содержат одинаковое число протонов, но разное число нейтронов.

Катализатор – это вещество, которые, участвуя в химическом процессе, остаются неизменными по химическому составу и количеству.

Катод – это электрод, на котором протекает восстановление.

Коррозия – это самопроизвольный процесс разрушения металлов и сплавов под действием окружающей среды.

Лиганды – это частицы, которые координируются вокруг ионов комплексообразователя, ими могут быть электронейтральные молекулы или заряженные ионы.

Моль – это количество вещества, которое независимо от агрегатного состояния, содержит столько же структурных единиц, сколько их содержится в 12г углерода С12 .

Сродство к электрону – это энергия, которая выделяется при присоединении к атому одного электрона, является мерой неметалличности элемента.

Эквивалент вещества – это количество вещества, которое соединяется с одним молем атомов водорода или замещает это количество атомов водорода в химических реакциях; масса одного эквивалента вещества называется эквивалентной массой.

Электролиты – это вещества, растворы и расплавы, которых проводят электрический ток.

Электролиз – это ОВР, протекающие на электродах, при прохождении постоянного электрического тока через раствор или расплав электролита.

Энтальпия – характеризует тепловой эффект реакции в изобарном процессе.

Энтропия – количественная мера беспорядка состояния системы.


  1. Лекции

Модуль 1. Основные законы

Введение. Основные понятия и законы химии

  1. Введение. Атомно - молекулярное учение

  2. Основные стехиометрические законы химии

  3. Законы газового состояния.

Введение. Атомно-молекулярное учение

Химия является одной из естественных наук.

Весь окружающий нас мир представляет собой движущуюся материю в ее бесконечно разнообразных формах и проявлениях.

Две такие формы проявления материи – это вещества и поля.

Вещество – это вид материи, состоящей из дискретных частиц, имеющих массу покоя. Например, молекул, атомов, электронов, атомных ядер. Поле – это такая форма существования материи, которая характеризуется, прежде всего, энергией. Посредством поля осуществляется связь и взаимодействие между частицами вещества.

Химия изучает качественный и количественный состав вещества. Качественный состав показывает из каких химических элементов состоит данное вещество, количественный состав указывает в каких количественных соотношениях находятся составляющие его элементы.

Задачей химии является изучение строение вещества, т.е. выяснение, из каких частиц состоит данное вещество, с помощью каких сил связаны между собой эти частицы и как они расположены в пространстве.

Химия изучает также физические и химические свойства веществ. Физические свойства: внешний вид вещества, его температуры плавления и кипения, способность проводить тепло и электрический ток, агрегатное состояние (твердое, жидкое, газообразное). Химические свойства вещества характеризуют его способность превращаться в другие вещества. Такие превращения называются химическими реакциями.

Важной задачей химии является разработка методов получения веществ, обладающих необходимыми свойствами, т.е. методов синтеза химических веществ.

Таким образом, химия изучает состав, строение, свойства и превращения веществ. Также она занимается разработкой методов их получения и очистки.

В настоящее время известно около 10 млн. различных природных и искусственно полученных веществ.В истории химии можно выделить несколько периодов.

Первый период. Зарождение и развитие химического искусства (с древнейших времен до середины XVII века).

Второй период. Становление химии как науки (со второй половины XVII в. до конца XVIII в.).

Третий период. Развитие химической науки на основе кислородной теории и атомно-молекулярного учения (с конца XVIII в. до 60-х гг. XIX в.)

Четвертый период. Превращение химии в современную науку (с 60-х годов XIX в.).

В конце XIX в. внимание химиков все больше привлекается к исследованию химических реакций и законов, которым они подчиняются. Развивается физическая химия, основы которой были заложены М.В. Ломоносовым. Появилась химическая теория растворов Д.И. Менделеева, были исследованы свойства разбавленных растворов, была создана теория электролитической диссоциации, развивались стереохимия и термодинамика, учение о скорости химических реакций и катализе.

Как одна из отраслей естествознания химия тесно связана с другими науками (биохимия, геохимия, физическая химия, космохимия, электрохимия и др.)

В настоящее время не существует ни одной отрасли техники и технологии, где не используются химические вещества и не осуществляются химические процессы. Применение законов химии позволяет совершенствовать существующие и создавать новые процессы, технологии и материалы.

Вот несколько актуальных направлений применения химии:

1) новые источники энергии (получение ракетного топлива, ядерного горючего, создание устройств для преобразования солнечной энергии в электрическую, разработка новых химических источников электрического тока);

2) новые материалы (производство синтетических материалов; создание новых оптико-волокнистых материалов; разработка микроэлектроники и молекулярной электроники, основанных на физико-химических процессах);

3) проблемы сельскохозяйственного производства (повышение урожайности сельскохозяйственных культур за счет развития производства минеральных удобрений, разработки средств борьбы с болезнями растений и их вредителями; увеличение продовольственных ресурсов и сырья для легкой промышленности за счет производства синтетических тканей, красителей, заменителей жиров и т.д.);

4) охрана окружающей среды (разработка методов обнаружения и количественного определения вредных примесей; создание безотходных или малоотходных производств; разработка способов обезвреживания и утилизации промышленных и бытовых отходов).

Атомно - молекулярное учение

Атомы – мельчайшие химические частицы, являющиеся пределом химического разложения любого вещества.

Химический элемент представляет собой вид атомов с одинаковым положительным зарядом ядра.

Другими словами, атом – это наименьшая частица химического элемента, сохраняющая все его химические свойства.

В настоящее время известно 117 химических элементов, из которых 92 встречаются в природе.

Абсолютное большинство различных веществ состоит из молекул.



Молекула – наименьшая частица вещества, способная существовать самостоятельно и сохраняющая его основные химические свойства.

Массы атомов химических элементов чрезвычайно малы: ~ 10-27 – 10-25 кг. В химии пользуются относительными значениями масс атомов (Ar, где r – «относительный», от англ. relative).



Относительная атомная масса – это масса атома, выраженная в атомных единицах массы. За атомную единицу массы принята 1/12 часть массы атома нуклида :

1 а.е.м. = .

Относительная атомная масса – величина безразмерная.

Соответственно, относительная молекулярная масса Mr вещества – это масса его молекулы, выраженная в а.е.м.

Единицей измерения количества вещества (n) является моль.

Моль – количество вещества, содержащее столько структурных элементарных единиц (атомов, молекул, ионов, электронов и т.д.), сколько содержится атомов в 0,012 кг изотопа углерода 12С.

Число атомов NA в 0,012 кг углерода, или в 1 моль, легко определить следующим образом:



.

Величина NAназываетсяпостоянной Авогадро.



Вещество – это конкретный вид материи, обладающий определенными физическими и химическими свойствами, состав которого может быть выражен химической формулой.

Химической реакцией называется процесс превращения одних веществ в другие.

Способность вещества участвовать в тех или иных химических реакциях характеризует его химические свойства.



Простое вещество состоит из атомов одного и того же химического элемента.

Химические соединения состоят из атомов нескольких элементов.

2 Основные стехиометрические законы химии

Стехиометрия – раздел химии, рассматривающий количественные соотношения между реагирующими веществами.

Закон сохранения массы: масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции.

Закон постоянства состава: всякое чистое вещество, независимо от способа его получения, имеет постоянный качественный и количественный состав.

Закон применим только к соединениям с молекулярной структурой.



Закон эквивалентов: массы реагирующих друг с другом веществ, а также массы продуктов этой реакции пропорциональны молярным массам эквивалентов этих веществ.

Например, в условной реакции А + 2В = 3С + Д

mА : mВ : mС : mД = ЭА : ЭВ : ЭС : ЭД,

где m – масса веществ, а Э – молярная масса эквивалентов.

Другими словами можно сказать, что вещества реагируют и образуются в эквивалентных количествах. Один эквивалент одного вещества всегда взаимодействует с одним эквивалентом другого.

Эквивалент – реальная или условная частица, которая может присоединять, высвобождать или быть каким–либо другим образом эквивалентна одному иону водорода в кислотно–основных реакциях или одному электрону в окислительно–восстановительных реакциях.

При использовании понятия «эквивалент» всегда необходимо указывать, к какой ионной реакции оно относится.















3 Законы газового состояния

Закон объемных отношений (Гей–Люссака): при неизменных температуре и давлении объемы вступающих в реакцию газов относятся друг к другу, а также к объемам образующихся газообразных продуктов как небольшие целые числа.

Закон Авогадро: в равных объемах любых газов при одинаковых условиях (Т, р) содержится равное количество молекул.

Следствия из закона Авогадро:

1.При одинаковых условиях 1 моль любого газа занимает одинаковый объем.

2.При н.у. 1 моль различных газов занимает объем 22,4 л (молярный объем газа, л/моль).

3.Отношение масс равных объемов различных газов равно отношению их молекулярных масс:



где m1 и m2 – массы, а и – молекулярные массы первого и второго газов.



- относительная плотность первого газа по второму.

Тогда


Объединенный газовый закон:

р0 = 101325 Па, Т0 = 0 ºС (273,15 К),

где р0, V0, Т0 – соответственно давление, объем, температура при н.у.; р, V, Т – те же параметры данного количества газообразного вещества при других условиях.

Для 1 моль любого газа при н.у.: - универсальная газовая постоянная.

R = 8,314 Дж/(мольК)
Для 1 моля газа тогда имеем:

Это уравнение состояния идеального газа.

Если количество газа другое, то получим уравнение Менделеева – Клапейрона:

(n – число молей данного вещества).

Закон парциальных давлений: общее давление смеси газов, химически не взаимодействующих друг с другом, равно сумме парциальных давлений газов, составляющих смесь:

где р – общее давление; р1, р2 … - парциальные давления газов 1, 2 …

Парциальное давление газа в смеси – давление, которое производило бы это же количество данного газа, если бы он один занимал при этой же температуре весь объем, занимаемый смесью.
Основные понятия, которые необходимо знать после изучения материала данной лекции: вещество, моль, эквивалент, эквивалентная масса, закон эквивалентов, закон Авогадро, парциальное давление, закон парциальных давлений.
Вопросы для самоконтроля


  1. Что называется молекулярной массой вещества? В каких единицах он выражается?

  2. Каково соотношение между атомной единицей массы и граммом?

  3. Что называется молем? Какое количество молекул вещества содержится в одном моле?

  4. Сформулируйте закон эквивалента.

  5. Что называется относительной плотностью газа?


Рекомендуемая литература: 1. Кулажанов К.С., Сулейменова М.Ш.Неорганическая химия,2012 с.17-26;

2. Глинка Н.С. Задачи и упражнения по общей химии,1988,с.7-23;

3. Угай Я.А. Общая и неорганическая химия, 1997, с.
Модуль 2. Строение атома.

Лекция №2. Строение атома и систематика химических элементов.

1.Модели строения атома: модели Томсона, Резерфорда, Бора.

2.Квантово-механическая модель строения атомов: атомные орбитали, квантовые числа, принцип Паули, правила Хунда и Клечковского.

3.Строение атомных ядер и изотопов. Ионы, энергия ионизации и сродство к электрону.

4.Структура периодической системы элементов. Периодичность свойств химических элементов.

1 Модели строения атома: модели Томсона, Резерфорда, Бора.

Долгое время в науке господствовало мнение, что атомы не делимы. Однако в конце ΧΙΧ – начале ΧΧ века был установлен ряд фактов свидетельствующих о сложном составе атомов. Сюда относятся открытие электрона, а также открытия и изучение радиоактивности. Изучение радиоактивности подтвердило сложность состава атомов. Теперь встал вопрос о строении атома, о его внутренней структуре. Согласно модели предложенной в 1903 году Томсоном атом состоит из положительного заряда, равномерно распределенного по всему объему атому и электрона колеблющегося внутри этого заряда. Для проверки гипотезы Томсона и более точного определения внутреннего строения атома Резерфорда провел серию опытов по рассеянию α-частиц тонкими металлическими пластинками. По результатам этих опытов в 1911 году Резерфорд предложил схему строения атома. Согласно этой схеме атом состоит из положительно заряженного ядра, в котором сосредоточено преобладающая часть массы атома и вращающихся вокруг него электронов. Положительный заряд ядра нейтрализуется суммарным отрицательным зарядом электрона, следовательно, атом в целом электронейтрален. Модель Резерфорда в некоторых отношениях противоречива твердо-установленным фактам. В настоящее время существует две модели структуры атома: 1 – модель Бора; 2 – квантово-механическая модель строения атома. Согласно теории Бора электроны в атоме вращаются вокруг ядра не по любым, а только по определенным круговым орбитам, соответствующим разным значениям энергии. Он утверждал, что энергия электрона изменяется скачками, то есть энергетические состояния электронов в атоме квантованы. Энергия электроны вращающегося вокруг ядра зависит от радиуса орбиты. Электрон обладает минимальной энергией, находясь на ближайшей к ядру орбите. При поглощении кванта энергии электрон переходит на менее стабильный уровень с более высокой энергией. При этом энергия атома увеличивается, и он перейдет в возбужденное состояние. Переход электрона в обратном направлении приведет к уменьшению энергии атома и освобождению поглощенной им энергии. Бор пронумеровал уровни энергии электрона, также обнаружил, что на разных энергетических уровнях может находиться разное количество электронов: 1 уровень содержит до 2 электронов; 2 уровень - до 8 и т.д. Теория Бора хорошо подходила для простых атомов, например водород, но не для атомов с более сложной структурой.



2 Квантово-механическая модель строения атома: атомные орбитали, квантовые числа, принцип Паули, правила Хунда и Клечковского.

В 20-х годах ΧΧ века появилась новая теория строения атомов, основанная на представлениях квантовой механики – квантово-механическая модель атома. В основу этой модели положена квантовая теория, согласно которой электрон имеет двойственную природу, т.е. обладает свойствами частицы и также волны. Следовательно, нельзя говорить о какой-либо определенной траектории движения электрона. Можно лишь судить о той или иной вероятности пребывания его в данной точке пространства - это принцип неопределенности. По современным представлениям состояние электрона в атоме описывается с помощью 4 чисел, которые называются квантовыми.

n – описывает среднее расстояние от орбитали до ядра, а также энергетическое состояние электрона находящегося в атоме. n может принимать положительные целочисленные значения. Чем больше значение n, тем выше энергия электрона и больше размер электронного облака. Электроны, характеризующиеся одним и тем же значением n, образуют в атоме электронные облака одинакового размера, которые называются электронными оболочками.

l – также называется побочным и описывает форму орбитали, которая зависит от n. l может принимать целочисленные значения от 0 до n-1. Например, при n=3 возможны l=0,1,2. Орбитали имеющие одинаковые значения n, но разные значения l принято называть энергетическими подуровнями. Энергетические подуровни обозначаются разными буквами.

Обозначение энергетических подуровней

m – описывает ориентацию в пространстве различных орбиталей, может принимать любое целочисленное значение как положительное так и отрицательное в пределах от –l до +l. Следовательно значение m зависит от значений l. Например, для l=1 возможны m= -1,0,+1. Это значит, что p-орбиталь имеет 3 разные пространственные ориентации. Энергия этих орбиталей одинакова, а ориентация в пространстве разная.

ms – описывает направление вращения электронов в магнитном поле: по часовой стрелке или против. ms может принимать только 2 значения - -1/2 и +1/2, и на каждой орбитали может находится только 2 электрона: один со спиной +1/2, а другой со спиной -1/2. Для определения состояния электрона в многоэлектронном атоме, важное значение имеет положение Паули (принцип Паули), согласно которому в атоме не может быть двух электронов, у которых все 4 квантовых числа были бы одинаковыми. Из этого следует, что каждая атомная орбиталь характеризуется определенными значениями n, l и m может быть занята не более чем двумя электронами, спины которых имеют противоположные знаки. Два таких электрона находящиеся на одной орбитали и обладающие противоположно направленными спинами, называются спаренными в отличие от одиночного, то есть неспаренного электрона, занимающего какую-либо орбиталь. Таким образом, квантовые числа используют для описания состояния электрона в вакууме. Однако существуют и более простые способы описания состояния электрона: 1 – диаграммы уровня энергии атома; 2 – электронные конфигурации.

Диаграмма уровня энергии атома


описание: ячс.bmp

Последовательность заполнения атомных орбиталей:

1) вначале электроны заполняют максимально низкие из свободных уровней энергии;

2) если конкретный энергетический уровень имеет более одного подуровня, то каждый из подуровней будет заполняться только одним электроном до тех пор, пока все уровни этого уровня не будут иметь по одному электрону и лишь затем эти подуровни начинают заполняться вторым электроном. Это называется правилом Хунда;

3) последовательность заполнения атомных электронных орбиталей в зависимости от значения главного и орбитального квантовых чисел была исследована Клечковским, который установил, что энергия электронов возрастает по мере увеличения суммы этих двух квантовых чисел (n+l). В соответствии с этим им было сформулировано следующее положение:

а) первое правило Клечковского – при увеличении заряда ядра атома последовательное заполнение электронных орбиталей происходит от орбиталей с меньшим значением суммы (n+l) к орбиталям с большим значением этой суммы;

б) второе правило Клечковского – согласно которому при одинаковых значениях суммы (n+l) заполнение орбиталей происходит последовательно в направлении возрастания значения главного квантового числа.

3 Строение атомных ядер и изотопов. Ионы, энергия ионизации и сродство к электрону.

Атом любого элемента состоит из одних и тех же частиц единственное что меняется это количество различных субатомных частиц: протон, электрон, нейтрон.

Основные характеристики трех основных субатомных частиц

По сравнению с остальной частью атома ядро имеет крайне малый размер и большую плотность. В основном диаметр атомов равен примерно 10-10 м, а диаметр ядер приблизительно 10-15 м. В атоме все протоны и нейтроны находятся внутри ядра. Ядро составляет большую часть массы атома, поэтому при расчетах массу атома можно считать равной сумме масс протонов и нейтронов. Целое число равное сумме протонов и нейтронов в ядре атома называется массовым числом ядра, а количество в атоме одних только протонов называется порядковым номером (атомный номер или заряд ядра). Для обозначения атомных ядер применяют структурный символ элемента.

A – массовое число (p++ n0); Z – порядковый номер (p+): описание: xcvxcb.bmpописание: dfgdfg.bmp

Количество электронов в атоме равно количеству протонов ядра всех атомов данного элемента имеют одинаковый заряд, то есть содержат одинаковое число протонов, но число нейтронов в ядрах этих атомов может быть различным. Атомы, обладающие одинаковым зарядом ядра, но разным числом нейтронов, называется изотопами. Для обозначения изотопов пользуются обычными символами соответствующих элементов, добавляя к ним слева вверху индекс, указывающий массовое число изотопа: 1H; 2H; 3H

Атомы элементов способны отдавать, присоединять электроны и образовывать общие электронные пары. Атомы, лишившиеся одного или не нескольких электронов, становится заряженным положительно, так как заряд ядра атома превышает сумму зарядов оставшихся электронов. Наоборот атомы, присоединившие к себе лишние электроны, заряжаются отрицательно, образующиеся заряженные частицы называются ионами. Ионы обозначают теми же символами, что и атомы, указывая справа вверху их заряд, например положительный трех зарядный ион Al обозначают Al3+, отрицательный – Cl-. Для отрыва электрона от атома с превращением последнего в положительный ион нужно затратить некоторую энергию называемую энергией ионизации. Энергию ионизации можно определить путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наименьшее напряжение поля, при котором скорость электрона становится достаточной для ионизации атомов, называется потенциалом ионизации атомов данного элемента и выражается в вольтах (В). Величина потенциала ионизации может служить мерой большей или меньшей металличности элемента: чем меньше потенциал ионизации, чем легче оторвать электрон от атома. Тем сильнее должны быть выражены металлические свойства элемента. Атомы могут также присоединять электроны. Энергия, выделяющаяся при присоединении электрона к свободному атому, называется сродством атома к электрону. Сродство к электрону, как и энергия ионизации обычно выражается в электрон-вольтах (эВ). Сродство к электрону атомов металлов, как правило, близко к нулю или отрицательно. Из этого следует, что для атомов большинства металлов присоединение электронов энергетически невыгодно. Сродство к электрону атомов неметаллов всегда положительно.

4 Структура периодической системы элементов. Периодичность свойств химических элементов.

Периодичный закон, открытый Д.И. Менделеевым в 1869 г., в современной формулировке гласит:свойства химических элементов, а также формы и свойства образуемых ими соединений находятся в периодической зависимости от величины заряда ядер их атомов.

Заряд ядра (число протонов) равен атомному номеру элемента, определяет число электронов в атоме и, как следствие этого, строение его электронной оболочки в основном состоянии.

Графическим изображением периодического закона является таблица периодической системы элементов. Формы такого изображения различны.

Принципиальный подход к построению таблиц единый – элементы располагаются в порядке возрастания заряда ядер их атомов. Физической основой структуры периодической системы элементов служит определенная последовательность формирования электронных конфигураций атомов по мере роста порядкового номера элемента Z.

В зависимости от того, какой энергетический подуровень заполняется электронами последним, различают 4 типа элементов:

1. s–элементы – последним заполняется s-подуровень внешнего энергетического уровня;

2. p–элементы – p–подуровень внешнего энергетического под-уровня;

3. d – элементы – d–подуровень предпоследнего энергетического уровня.

4. f–элементы – f–подуровень третьего снаружи уровня.

Элементы со сходной электронной конфигурацией (заполняются однотипные подуровни) внешних энергетических уровней обладают и сходными химическими свойствами.

Периодом называется последовательный ряд элементов, электронная конфигурация внешнего энергетического уровня которых изменяются от ns1 до ns2np6 (для первого периода s1 и s2). При этом номер периода совпадает со значением главного квантового числа и внешнего энергетического уровня.

Каждый из периодов (исключая первый) начинается типичным металлом и заканчивается благородным газом, которому предшествует неметалл, то есть в периоде с увеличением заряда ядра атомов наблюдается постепенное изменение свойств от металлических к типично неметаллическим, что связывается с увеличением числа электронов на внешнем энергетическом уровне.

Первые три периода создают s- и p- элементы. Четвертый и последующие - включают в свой состав также элементы, у которых происходит заполнение d- и f-подуровней соответствующих внутренних энергетических уровней. f-элементы объединяются в семейства, называемые лантанидами (4f-элементы) и актинидами (5f-элементы).

В вертикальных колонках, называемых группами, объединены элементы, имеющие сходное электронное строение. В короткопериодном варианте таблицы всего 8 групп, каждая из которых состоит из главных и побочных подгрупп. У элементов главных подгрупп последними заполняются s- и p- подуровни внешних энергетических уровней, электронные конфигурации которых являются основным фактором, определяющим химические свойства элементов. У элементов побочных подгрупп происходит заполнение внутренних (n-1)d- и (n-2)f-подуровней при наличии на внешнем энергетическом уровне 1 – 2 электронов.

Элементы-аналоги имеют одинаковое строение внешних электронных оболочек атомов при разных значениях главного квантового числа n и поэтому проявляют сходные химические свойства.

Таким образом, при последовательном увеличении зарядов атомных ядер периодически повторяется конфигурация электронных оболочек и, как следствие, периодически повторяются химические свойства элементов. В этом заключается физический смысл периодического закона.

Элементы главных и побочных подгрупп различаются своими химическими свойствами, однако им присуще и общее, что объединяет их в одну группу - номер группы. Он, как правило, указывает на число электронов, которое может участвовать в образовании химических связей. В этом состоит физический смысл номера группы.

Таким образом, у элементов главных подгрупп валентными (то есть участвующими в образовании химических связей) являются электроны внешнего энергетического уровня, а у элементов побочных подгрупп – и электроны предпоследних уровней. Это основное различие между элементами главных и побочных подгрупп.

Поскольку электронная конфигурация атомов химических элементов изменяется периодически с ростом заряда их ядер, все свойства, определяемые электронным строением, закономерно изменяется по периодам и группам периодической системы. К таким свойствам относятся прежде всего различные химические и физические характеристики элементов: атомные и ионные радиусы, сродство к электрону, степень окисления, атомный объем и др. Периодически изменяются также многие химические и физические свойства простых и сложных веществ, образованных элементами–аналогами.

Атом не имеет строго определенную границу, поэтому установить его абсолютные размеры невозможно. Различают следующие радиусы ато-мов.

Ковалентный радиус представляет собой половину межъядерного расстояния в молекулах или кристаллах соответствующих простых ве-ществ.

Металлический радиус равен половине расстояния между центрами двух соседних атомов кристаллической решетки металла.

Кроме того, различают ионные радиусы катионов, которые всегда меньше атомных радиусов соответствующих элементов, и радиусы анионов, которые больше атомных радиусов.

Орбитальный радиус – теоретически рассчитанное расстояние от ядра до главного максимума электронной плоскости главной орбитали.

Закономерности изменения рассматриваемых параметров в системе элементов имеет периодический характер. Наиболее общие из них следую-щие:

1. в периодах по мере роста заряда ядер радиусы атомов уменьшаются;

2. в группах с ростом заряда ядер радиусы атомов увеличиваются, при этом в группах А такое увеличение происходит в большей степени, чем в группах В.

Химическая активность элемента определяется способностью его ато-мов терять или приобретать электроны. Количественно это оценивается энергией ионизации Еион атомов (или потенциалом ионизации I) и его сродством к электрону Еср.

Энергия ионизации – минимальная энергия, необходимая для отрыва наиболее слабосвязанного электрона от невозбужденного атома (э - элемент):

Энергия ионизации выражается в килоджоулях на моль (кДж/моль) или в электрон-вольтах на атом (эВ/ат).

Наименьшее напряжение электрического поля, при котором происходит отрыв электрона, называется потенциалом ионизации I (выражается в вольтах - В). Численное значение I в вольтах равно энергии ионизации Еион. в электрон-вольтах.

Отрыву первого электрона соответствует первый потенциал ионизации I1, второго – I2, и т.д. При этом I1

Потенциал ионизации является сложной функцией некоторых свойств атома: заряда ядра, радиуса атома, конфигурации внешних электронных оболочек.

Способность атома образовывать отрицательно заряженные ионы характеризуется сродством к электрону, под которым понимается энергетиский эффект присоединения электрона к нейтральному атому в процессе:

Наибольшим сродством к электрону характеризуются элементы группы VIIA. У большинства металлов и благородных газов сродство к электрону невелико или даже отрицательно. Присоединение двух или большего числа электронов к атому вообще невозможно.

Электроотрицательность - условная величина, характеризующая способность атома в химическом соединении притягивать к себе электроны.

Для практической оценки этой способности атома введена условная относительная шкала электроотрицательности (ЭО). По такой шкале наиболее электроотрицательным среди элементов, способных образовывать химические соединения, является фтор, а наименее электроотрицательным – франций.

В периоде с ростом порядкового номера элемента ЭО возрастает, а в группе, как правило - убывает.
Основные понятия, которые необходимо знать после изучения материала данной лекции:

Модели атома Томсона, резерфорда, Бора; Атомные орбитали; квантовые числа; Принцип Пауля; Правила Хунда, Клечковского; Знергия ионизации; Сродство к электрону.


Вопросы для самоконтроля

1.Каков смысл понятия атомная орбиталь?

2.Укажите число орбиталей, которые характеризуются следующими значениями орбитального квантового числа: 2; 1; 0.

3.Какое число электронов может находиться в энергетических состояниях 2s; 3p; 4d; 5f?

4.Составьте электронные формулы для атомов элементов: хлора, ванадия, олова.

5.Чему равен суммарный спин электронов в невозбужденном атоме хрома?


Рекомендуемая литература: 1. Кулажанов К.С., Сулейменова М.Ш.Неорганическая химия,2012 с.33-51;

2. Глинка Н.С. Задачи и упражнения по общей химии,1988,с. 40-54;

3. Угай Я.А. Общая и неорганическая химия, 1997, с.
Модуль 3. Основные закономерности протекания реакций.

Лекция №3 Энергетика химических процессов.

  1. Термохимические законы.

  2. Энтальпии образования химических соединений.

  3. Энтропия. Энергия Гиббса.

1 Термохимические законы

Химическое превращение – это качественный скачок, при котором исчезают одни вещества и появляются другие. Происходящая при этом перестройка электронных структур атомов, ионов и молекул сопровождается выделением или поглощением тепла, света, электричества и т.д. – превращением химической энергии в другие виды энергии.

Энергетические эффекты химических реакций изучает термохимия. Данные об энергетических эффектах используются для выяснения направленности химических процессов, для расчета энергетических балансов технологических процессов и т.д. С их помощью можно рассчитать температуру горения различных веществ и материалов, температуру пожаров и т.п.

Состояние системы (вещества или совокупности рассматриваемых веществ) описывают с помощью ряда параметров состояния – t, p, m. Для характеристики состояния системы и происходящих в ней изменений важно знать также изменение таких свойств системы, как ее внутренняя энергия U, энтальпия Н, энтропия S, энергия Гиббса (изобарно-изотермический потенциал) G. По изменению этих свойств системы можно судить, в частности, об энергетике процессов.

Химические реакции обычно протекают при постоянном объеме V = const, V = 0 (например, в автоклаве) или при постоянном давлении p = const (например, в открытой колбе), т.е. является соответственно изохорными или изобарными процессами.

Энергетический эффект химического процесса возникает за счет изменения в системе внутренней энергии U или энтальпии H. Внутренней энергией системы называют энергию всех видов движения и взаимодействия тел или частиц, составляющих систему (кинетическая энергия межмолекулярного взаимодействия, вращательная энергия, колебательное движение атомов и групп в молекуле, энергия взаимодействия электронов между собой и с ядрами).

Предположим, что некоторая система за счет поглощения теплоты q переходит из состояния 1 в состояние 2. В общем случае эта теплота расходуется на изменение внутренней энергии системы U и на совершение работы против внешних сил А: или .

Приведенное уравнение выражает закон сохранения энергии (который называется также первым законом термодинамики), т.е. означает что сумма изменения внутренней энергии и совершенной системой работы равна сообщенной (или выделенной ею)теплоте.



2 Энтальпии образования химических соединений.

Для химических реакций под работой против внешних сил в основном подразумевается работа против внешнего давления. В первом приближении (при p = const) она равна произведению давления р на изменение объема системы V при переходе ее из состояния 1 в состояние 2:



При изохорном процессе (V = const), поскольку изменения объема системы не происходит, А = 0. Тогда переходу системы из состояния 1 в состояние 2 отвечает равенство: . Таким образом, если химическая реакция протекает при постоянном объеме, то выделение или поглощение теплоты qv связано с изменением внутренней энергии системы.

При изобарном процессе (p = const) тепловой эффект qр равен:

или

.

Введем обозначение .

Тогда qp = H2 – H1 = H.

Величину Н называют энтальпией. Энтальпию можно рассматривать как энергию расширенной системы. Таким образом, если при изохорном процессе энергетический эффект реакции равен изменению внутренней энергии системы , то в случае изобарного процесса он равен изменению энтальпии системы .

Химические и физические изменения в системе, как правило, сопровождаются выделением и поглощением теплоты. Наибольшую теплоту, которую можно получить при химическом процессе при данной температуре, называют тепловым эффектом процесса. Процессы в химии, при которых теплота выделяется, называются экзотермическими, а процессы, при которых теплота поглощается, - эндотермическими. Тепловые эффекты экзотермических реакций в термохимии принято считать положительными, а эндотермических функций – отрицательными. В отличие от термохимии в химической термодинамике, наоборот, положительные значения принимаются для тепла (Q), поглощенного системой. С целью согласовать систему знаков, будем тепловой эффект процесса обозначать через Q и считать, что

Q = -q, т.е. QV= -U; QP = -H.

(В химической термодинамике: q – поглощаемая энергия - положительна; q - отдаваемая (излучаемая) энергия – отрицательна.)

Энергетический эффект реакции, протекающей при постоянном давлении, отличается от энергетического эффекта реакции, протекающей при постоянном объеме, на величину pV. Для химического процесса, протекающего изобарически, V представляет собой разность между суммой объемов исходных веществ и продуктов реакции. Так, для реакции, записанной в общем виде:



,


где VA, VB, …, VD, VE… - молярные объемы веществ A, B, …, D, E…; Vпрод – сумма молярных объемов продуктов реакции; Vисх – сумма молярных объемов исходных веществ.

Следует отметить, что подавляющее большинство химических реакций происходит при постоянном давлении. Поэтому таким реакциям в дальнейшем будет уделено наибольшее внимание.

Тепловые эффекты реакций определяют как экспериментально, так и с помощью термохимических расчетов. Абсолютные значения внутренней энергии и энтальпии определить невозможно. Однако для термохимических расчетов это несущественно, т.к. здесь представляет интерес энергетический эффект процесса, т.е. изменение состояния системы – изменение значений U и H (U и Н).

При экзотермических реакциях теплота выделяется, т.е. уменьшается энтальпия, или внутренняя энергия системы, и значения Н и U для них отрицательны.

При эндотермических реакциях теплота поглощается, т.е. Н и U системы возрастают, а Н и U имеют положительные значения (это значит, что продукт реакции менее устойчив, чем исходное вещество).

Для того, чтобы можно было сравнивать энергетические эффекты различных процессов, термохимические расчеты обычно относят к 1 моль вещества и условиям, принятым за стандартные. За стандартные принимают давление 101325 Па и температуру 25 оС (298,15 К). Стандартные тепловые эффекты принято обозначать .

Уравнения химических реакций с указанием тепловых эффектов называют термохимическими уравнениями.

Термохимическое уравнение реакции синтеза 1 моля воды имеет вид:



.

В термохимических уравнениях указывается также агрегатное состояние и полиморфная модификация реагирующих и образующихся веществ: г – газовое, ж – жидкое, к – кристаллическое и т.д.



В основе термохимических расчетов лежит закон, сформулированный Гессом Г.И. (1841):

Тепловой эффект зависит только от вида (природы) и состояния исходных веществ и конечных продуктов, но не зависит от пути процесса, т.е. от числа и характера промежуточных стадий.

Так, образование оксида углерода (IV) из графита и кислорода можно рассматривать или как непосредственный результат взаимодействия простых веществ:



,

или как результат процесса, протекающего через промежуточную стадию образования и сгорания оксида углерода (II):



или суммарно



Согласно закону Гесса, тепловые эффекты образования СО2 как непосредственно из простых веществ, так и через промежуточную стадию образования и сгорания СО равны



.

По приведенному равенству нетрудно вычислить одну из величин Н, зная две другие. Как известно, тепловые эффекты образования СО2 (Н1) и горения СО (Н3) определяются экспериментально. Тепловой же эффект образования СО (Н2) измерить невозможно, т.к. при горении углерода в условиях недостатка кислорода образуется смесь СО и СО2. Но теплоту образования СО можно рассчитать по известным значениям и : ; .



Следствия из закона Гесса:

  1. Тепловой эффект обратной реакции равен тепловому эффекту прямой реакции с обратным знаком, т.е. для реакций

отвечающие им тепловые эффекты связаны равенством



.

  1. Если в результате ряда последовательных химических реакций система приходит в состояние, полностью совпадающее с исходным (круговой процесс), то сумма тепловых эффектов этих реакций равна нулю, т.е. для ряда реакций

сумма их тепловых эффектов



.

В термохимических расчетах широко используют энтальпии (теплоты) образования веществ.

Под энтальпией образования понимают тепловой эффект реакции образования 1 моля вещества из простых веществ. Обычно используют стандартные энтальпии образования. Их обозначают или (часто один из индексов опускают; f – от англ. formation).

Стандартные энтальпии образования простых веществ, устойчивых в стандартных условиях (газообразный кислород, жидкий бром, кристалллический иод, ромбическая сера, графит и т.д.), принимают равными нулю.

Согласно закону Гесса тепловой эффект реакции равен сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ. Для реакций вида



тепловой эффект Нх.р. определяется равенством



или


.

Примеры.


  1. Для реакции взаимодействия кристаллического оксида алюминия и газообразного оксида серы (VI)



  1. Реакция термического разложения СаСО3:

3. Реакция разложения бертолетовой соли



Энтальпии образования известны примерно для 4000 веществ в различных агрегатных состояниях. Это позволяет чисто расчетным путем установить энергетические эффекты самых разнообразных процессов.


3 Энтропия. Энергия Гиббса.

Большинство процессов представляет собой два одновременно происходящих явления: передачу энергии и изменение в упорядоченности расположения частиц относительно друг друга.

Частицам (атомам, ионам) присуще стремление к беспорядочному движению, поэтому система стремится перейти из более упорядоченного состояния в менее упорядоченное.

Так, если, например, баллон с газом соединить с сосудом, то газ из баллона будет распределяться по всему объему сосуда. При этом система из более упорядоченного состояния (с меньшим беспорядком) переходит в состояние менее упорядоченное (с большим беспорядком).



Количественной мерой беспорядка является энтропия S.

Или другими словами: энтропия – мера неупорядоченности системы. Ее представляют как логарифмическое выражение вероятности существования вещества или различных его форм:



,

где S – энтропия, - коэффициент пропорциональности (к – постоянная Больцмана), W – термодинамическая вероятность существования вещества или какой-либо его формы, т.е. число возможных микросостояний, соответствующих данному макросостоянию вещества.

При переходе системы из более упорядоченного состояния в менее упорядоченное энтропия возрастает (S> 0). Чтобы оценить изменение энтропии при переходе из состояния 1 в состояние 2 необходимо, как обычно, из величины какого-либо свойства, характеризующего конечное состояние, вычесть величину того же свойства, характеризующего начальное состояние:



II закон термодинамики: в изолированных системах энтропия самопроизвольно протекающего процесса возрастает, т.е. S> 0.

Переход же системы из менее упорядоченного состояния в более упорядоченное связан с уменьшением энтропии, и самопроизвольное протекание подобного процесса менее вероятно. Так, ясно, что в рассматриваемом примере невероятно, чтобы газ самостоятельно собрался в баллоне.

В случае перехода системы из менее упорядоченного состояния в более упорядоченное энтропия системы уменьшается (S< 0).

Нетрудно понять, что энтропия возрастает при переходе жидкости в пар, при растворении кристаллического вещества, при расширении газов и т.д. Во всех этих случаях наблюдается уменьшение порядка в относительном расположении частиц. Наоборот, в процессах конденсации, кристаллизации веществ энтропия уменьшается.

Вероятность существования различных соединений вещества (газ, кристаллическое, жидкое) можно описать как некоторое свойство и количественно выразить значением энтропии S. [Энтропия может измеряться в энтропийных единицах 1 э.е. = 1 кал/(мольград.) = 4,1868 Джмольград.] Энтропии веществ, как и энтальпии их образования, принято относить к определенным условиям. Обычно это стандартные условия. Энтропию в этом случае обозначают и называют стандартной.

В соответствии со степенью беспорядка энтропия вещества в газовом состоянии значительно выше, чем в жидком, а тем более – в кристаллическом. Например,

При данном агрегатном состоянии энтропия тем значительнее, чем больше атомов в молекуле. Например,

;

Чем больше твердость вещества, тем меньше его энтропия. Энтропия возрастает с увеличением степени дисперсности частиц вещества.

Для химических реакций в целом

изменение энтропии будет



.

Об изменении энтропии в химической реакции можно судить по изменению объема в ходе реакции:



, и ;

и .

Если в реакции участвуют только твердые и образуются только твердые вещества или число молей газообразного вещества не изменяется, то изменение энтропии в ходе ее очень незначительно.



В стандартных условиях энтропия простого вещества не равна нулю.

III закон термодинамики: энтропия чистых веществ, существующих в виде идеальных кристаллов при температуре 0 К, равна нулю.

Стремление системы к возрастанию энтропии называют энтропийным фактором. Этот фактор тем больше, чем выше температура. Количественно энтропийный фактор оценивается произведением Т·.

Стремление системы к понижению потенциальной энергии называют энтальпийным фактором. Количественно эта тенденция системы выражается через тепловой эффект процесса, то есть значением .

Самопроизвольно, то есть без затраты работы извне, система может переходить из менее устойчивого состояния в более устойчивое.

В химических процессах одновременно действуют две тенденции: стремление частиц объединиться за счет прочных связей в более сложные, что уменьшает энтальпию системы, и стремление частиц разъединяться, что увеличивает энтропию. Иными словами, проявляется действие двух прямо противоположных факторов – энтальпийного () и энтропийного (Т·). Суммарный эффект этих двух противоположных тенденций в процессах, протекающих при постоянных Т и р, отражает изменение энергии Гиббса G (или изобарно–изотермического потенциала):



.

Характер изменения энергии Гиббса позволяет судить о принципиальной возможности или невозможности осуществления процесса. Условием принципиальной возможности являются неравенство:



(условие самопроизвольности).

Иными словами, самопроизвольно протекают реакции, если энергия Гиббса в исходном состоянии системы больше, чем в конечном.

Увеличение энергии Гиббса () свидетельствует о невозможности самопроизвольного осуществления процесса в данных условиях.

Если же , то система находится в состоянии химического равновесия.

В соответствии с уравнением самопроизвольному протеканию процесса способствует уменьшение энтальпии и увеличение энтропии системы, то есть когда и .

При других сочетаниях и возможность процесса определяют либо энтальпийный, либо энтропийный фактор.

Рассмотрим две следующие реакции:

1)

;

2)



.

Первая реакция экзотермическая, протекает с уменьшением объема. Возможность этой реакции () определяется действием энтальпийного фактора, которое перекрывает противодействие энтропийного фактора: .

Вторая реакция эндотермическая. Протекает с увеличением объема. Возможность этой реакции (), наоборот, определяется энтропийным фактором. При высокой температуре энтропийный фактор перекрывает энтальпийный фактор: . Реакция протекает самопроизвольно.

Согласно уравнению влияние температуры на определяется знаком и величиной .

Для реакции с (2C + O2 2CO) повышение температуры приводит к увеличению отрицательного значения . Для реакции с (2Hg + O2 2HgO) с повышением температуры отрицательное значение уменьшается; в этом случае высокотемпературный режим препятствует протеканию процесса. При соответствующей температуре приобретает положительное значение, и реакция должна протекать в обратном направлении. Если же при протекании процесса энтропия системы не изменяется , то значение реакции от температуры практически не зависит.

При высоких температурах самопроизвольно можут протекать реакции, сопровождающиеся увеличением энтропии, при низких температурах – только экзотермические реакции.

Процессы, протекающие с уменьшением энтальпии () и увеличением энтропии (), практически необратимы. В этом случае всегда будет иметь отрицательное значение, какую бы температуру не применяли. Так, для реакции

2КClO3 = 2KCl+3O2

при любой температуре.

Под стандартной энергией Гиббса образованияпонимают изменение энергии Гиббса при реакции образования 1 моля вещества в стандартных условиях из простых веществ, находящихся в стандартном состоянии.

Стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю.

Изменение энергии Гиббса, как и изменение энтальпии системы, не зависит от пути процесса. Поэтому для реакции вида



изменение стандартной энергии Гиббса равно разности между суммой стандартных энергий Гиббса образования продуктов реакции и суммой стандартных энергий Гиббса образования исходных веществ:



.

Для реакции NO + 1/2О2 = NO2


86,58 0 51,5 кДж/моль.

При пользовании значениями критерием принципиальной возможности процесса в нестандартных условиях следует принять условие , а критерием принципиальной невозможности осуществления процесса - неравенство . Равенство означает, что система находится в равновесии.

Во многих случаях значениями можно пользоваться лишь для приближенной оценки направления протекания реакций.

Чем отрицательнее значение вещества, тем данное химическое соединение устойчивее. И наоборот, чем положительней , тем менее устойчиво данное вещество.



известны для немногих соединений, но вместе с тем с помощью и можно вычислить для десятков тысяч реакций, в том числе предполагаемых и не изученных экспериментально.
Основные понятия, которые необходимо знать после изучения материала данной лекции: энтальпия, энтропия, внутренняя энергия, энергия Гиббса, закон Гесса и следствия из закона Гесса.
Вопросы для самоконтроля

  1. Сформулируйте закон Гесса.

  2. Что называется теплотой образования химического соединения?

  3. Что такое энтропия?

  4. Чему равна стандартная энергия Гиббса образования?

  5. Опишите законы термодинамики.


Рекомендуемая литература: 1. Кулажанов К.С., Сулейменова М.Ш.Неорганическая химия,2012 с. 104-121;

2. Глинка Н.С. Задачи и упражнения по общей химии,1988,с. 74-90;

3. Угай Я.А. Общая и неорганическая химия, 1997, с.
Лекция №4,5 Химическая кинетика и равновесие в гомогенных системах

  1. Факторы, влияющие на скорость химической реакции.

  2. Энергия активации химических реакций.

  3. Обратимые химические реакции. Химическое равновесие.

1 Факторы, влияющие на скорость химической реакции

Химической кинетикой называется учение о скорости химических реакций и ее зависимости от различных факторов (концентрации реагентов, t, Р, катализатора и т.д.).

Химические реакции протекают с различной скоростью. Одни реакции заканчиваются в течение долей секунды (разложение взрывчатых веществ), другие – продолжаются минутами, часами, сутками, третьи – длятся десятки, сотни, тысячи лет (процессы, протекающие в земной коре).

Скорость конкретной реакции тоже может изменяться в широких пределах в зависимости от условий ее протекания (смесь водорода и кислорода при обычной температуре может сохраняться без изменений неограниченное время; при введении в нее соответствующего катализатора она реагирует весьма бурно; при 630 °С она реагирует и без катализатора).



Фазой называется часть системы, отличающаяся по своим физическим и химическим свойствам от других частей системы и отделенная от них поверхностью раздела, при переходе через которую свойства системы резко меняются.

Системы, состоящие из одной фазы, называются гомогенными, из нескольких фаз – гетерогенными. Соответственно реакции, в которых взаимодействующие вещества находятся в одной фазе, называются гомогенными, а реакции, в которых вещества соединяются в различных фазах – гетерогенными.

Скорость гомогенной химической реакции принято выражать изменением концентрации реагирующих веществ или образовывающихся продуктов реакции в единицу времени. Концентрации исходных веществ в ходе реакции уменьшаются, а концентрации продуктов реакции возрастают во времени. Скорость гомогенной химической реакции по мере израсходования исходных веществ уменьшается.

Средняя скорость реакции vср в интервале времени от t1 до t2 определяется соотношением:



; .

t

t1 t2



C

С1


С2

Рис. 5.1. Изменение концентрации исходных веществ во времени.


Мгновенная скорость – это скорость реакции в данный момент времени t. Она определяется производной от концентрации по времени:

С

t



Продукты реакции

Исходные вещества


Рис. 5.2. Изменение концентрации реагирующих веществ во времени.
Скорость реакции всегда считается положительной. Если при расчетах берем изменение концентрации исходных веществ, то в указанном выражении ставится знак «-»; если это касается продуктов реакции, то следует принимать знак «+».

Факторы, влияющие на скорость химической реакции:



  1. природа реагирующих веществ;

  2. концентрация реагентов;

  3. температура;

  4. катализаторы;

  5. дисперсность (для твердых веществ);

  6. кислотность среды (для реакции в растворах);

  7. форма реактора (для цепных реакций);

  8. интенсивность освещения видимыми или УФ-лучами (для фотохимических реакций);

  9. интенсивность облучения -лучами (для радиационно – химических реакций) и т.д.


Природа реагирующих веществ

2NO + O2 = 2NO2 – идет при стандартных условиях.

2CO + O2 = 2CO2 – не реагирует при стандартных условиях, хотя чисто внешне уравнения данных реакций похожи, но природа веществ различна.
Концентрация реагентов

Необходимой предпосылкой взаимодействия веществ является столкновение молекул. Число столкновений, а значит и скорость химической реакции, зависит от концентрации реагирующих веществ: чем больше молекул, тем больше и столкновений.




Каталог: ebook -> umkd
umkd -> Программа дисциплины «Аграрная экология»
umkd -> Республики казахстан
umkd -> Лекция Теоретические основы стратегии экономического развития Республики Казахстан
umkd -> Республики казахстан
umkd -> Лекция часа Приборы для контроля параметров микроклимата, систем вентиляции, пылегазового режима, пылегазоулавливающих систем
umkd -> Республики казахстан
umkd -> Республики казахстан
umkd -> Учебно-методическии комплекс
umkd -> Республики казахстан
umkd -> Учебно-методический комплекс дисциплины «Основы судебно-медицинской экспертизы»


Поделитесь с Вашими друзьями:
  1   2   3   4   5   6   7   8   9   10


База данных защищена авторским правом ©vossta.ru 2019
обратиться к администрации

    Главная страница