Руководство оператора


Антиоксиданты и механизм образования активных форм кислорода в клетке



страница4/6
Дата17.11.2018
Размер0.68 Mb.
ТипКурсовая
1   2   3   4   5   6

Антиоксиданты и механизм образования активных форм кислорода в клетке.




14.Механизм образования активных форм кислорода

Потребляемый организмом кислород практически полностью (95-98%) расходуется на выработку энергии и окислительный катаболизм субстратов, и лишь малая его часть переходит в активные формы кислорода (уровень АФК в тканях равен примерно 10-8М).

Конфигурация внешней электронной оболочки атома кислорода 2S22P4 . Молекула кислорода двухатомна. В основном состоянии (триплетное 3-g) два валентных электрона молекулы О2, находящиеся на разрыхляющих орбиталях πх и πу, не спарены (рис. 25) и, таким образом, молекула кислорода является бирадикалом. Помимо основного, существуют еще два долгоживущих возбужденных состояния О2 - синглетное 1Δg (энергия возбуждения 94,1 кДж/моль, время жизни 45 мин) и синглетное 1+g (энергия возбуждения 156,8 кДж/моль).
Рисунок 25: Схема распределения электроном по атомным орбиталям молекулы кислорода.

Существует также аллотропная модификация кислорода - азон О3.Озон образует озониды, в которых ионная форма кислорода - О-3. Молекула кислорода образует три различные ионные формы, каждая из которых дает начало классу соединений: О-2 - супероксидам, О22- - пeроксидам, О+2 - диоксигенильным соeдинениям.

Молекула кислорода, присоединяя дополнительный электрон, образует высоко реакцион-носпособный супероксид-радикал (•О2-). Супероксид может порождать вторичные АФК:

присоединяя еще один электрон, образует короткоживущий пероксид-анион (•О22-), который легко связывает протоны и вследствие этого переходит в Н2О2

присоединяя NO, образует пероксинитрит (образуется при избытке О2-)

переводит трехвалентное железо Fe3+ в двухвалентное Fe2+, которое при взаимо-действии с Н2О2, НClО и липоперекисями образует гидроксильный радикал ОН* или липоксильный радикал LO* (образуется при избытке О2-)

присоединяя 2 протона и электрон, образует перекись кислорода Н2О2 (основной продукт).

Присоединение электрона к Н2О2 ведет к расщеплению молекулы на ионы О2- и О- . В то время как О2- путем присоединения двух протоны образует воду, протонирование О- приводит к особо опасному гидроксил-радикалу (ОН-). Присоединение еще одного электрона и заключительное протонирование ОН- заканчивается образованием воды (рис. 26).


Донорами электронов могут быть Fe2+, Cu+ (из активных центров) или семихиноны, а для второй и третей реакций – также и О2-:

Рисунок 26: АФК.

В клетке активные формы кислорода возникают в результате различных окислитель-восстановительных реакций, протекающих в ней. К АФК относятся супероксид анион-радикал O2.- , перекись водорода H2O2, гидроксильный радикал (ОН-), синглетный O2, озон O3, гипохлорид НClО, окись азота NO и ряд других кислородсодержащих веществ, обладающих высокой окислительной активностью и способных повреждать редокс-чувствительные компоненты клетки, прежде всего белки, липиды и нуклеиновые кислоты.

Раньше полагали, что АФК являются исключительно токсичными для клетки метаболитами и поэтому в клетке существует множество систем для борьбы с ними. Но по мере изучения АФК стало ясно, что они не всегда пагубно влияют на клетку.

К настоящему времени накопилось немало сведений о сигнальной роли АФК, хотя конкретных метаболических путей, в которых могут участвовать АФК, в большинстве случаев еще не выявили. Так, например, есть данные, что АФК участвуют в качестве сигнальных молекул при активации транскрипционных факторов AP-1 и NF-κB и индукции экспрессии генов при иммунном ответе. АФК могут выступать и в качестве индукторов клеточной гибели или наоборот, ингибировать цитотоксическое действие терапевтических препаратов на опухолевые клетки [44]. Возможно, что АФК могут выступать в роли митотических стимуляторов.

Существуют также данные об участии АФК в регуляции редокс-статуса и окислительных модификаций белков.

Регуляция редокс-сигнализации может осуществляться как через общий уровень глутатиона (GSH) в клетке, так и через соотношение GSH/GSSH (рис.29). Глутатион (трипептид Glu-Cys-Gly) находитсяся почти во всех клетках в высокой концентрации и содержит нетипичную γ-связь между Glu и Cys. Восстановителем здесь является тиольная группа цистеинового остатка. Две молекулы восстановленной формы (GSH) при окислении образуют дисульфид (GSSG) (рис. 27). Окислительные модификации затрагивают, как правило, остатки цистеина в функциональных доменах различных белков, приводя к инактивации ферментов, изменению способности связывания транскрипционных факторов с ДНК и другим функциональным нарушениям. При понижении уровня восстановленного глутатиона нарушается проведение сигнала от ряда рецепторов факторов роста и связывание транскрипционных факторов с ДНК, подавляется рост и размножение многих клеточных типов.


Рисунок 27: Глутатион.
Источником АФК в клетке является множество различных ферментативных и неферментативных систем. Одним из главных генераторов АФК в клетке являются пероксисомы, в которых локализован целый ряд образующих перекись водорода ферментов. Эта перекись используется клеткой в основном для детоксикации ксенобиотиков, и практически вся утилизируется внутри этих органелл. В гладком эндоплазматическом ретикулуме локализован ряд цитохром-зависимых оксигеназ, продуцирующих супероксид O2.. Очень много образуется АФК в эритроцитах. В плазмалемме макрофагов и эндотелиоцитов существует НАД(Ф)Н-оксидазная система, продуцирующая супероксид анион в ходе иммунного и воспалительного ответа. Остеокласты (специализированные макрофаги) применяют АФК для разрушения кости – обязательное условие ее обновления. При этом клетки-защитники быстро поглощают большое количество O2 (дыхательный взрыв), образуя внешней стороны мембраны супероксид O2.– за счет окисления цитозольного НАД(Ф)Н.
В клетках образование АФК происходит еще и потому, что в дыхательной цепи митохондрий происходит утечка электронов с комплексов I и III и за счет этого в среднем около 2% поступающего кислорода переходит в активную форму, при этом часть АФК идет на оксидативную модификацию макромолекул. Продукция O2.– в митохондриях осуществляется несколькими различными путями и значительно зависит от активности дыхания (состояние 3 или 4) и изменений парциального давления кислорода (гипоксия или реоксигенация). Митохондрии более всех других органелл подвержены атаке АФК и, как следствию, повреждению мембранных липидов, углеводов, белков и ДНК, причем для гибели митохондриям не требуется никаких дополнительных белков, кроме тех, которые присутствуют в них самих. Окислительный стресс является причиной множества дегенеративных заболеваний, старения и гибели клетки.

Основным местом утечки электронов из дыхательной цепи и, следовательно, образования O2.– является убихинол цитохром с оксидоредуктаза, где генерация происходит за счет одноэлектронного восстановления молекулярного кислорода от убисемихинона [43]. В НАДН-убихинон-редуктазе источником O2.– служит семихиноновая форма флавина. При изменении интенсивности потока электронов и степени восстановленности компонентов дыхательной цепи митохондрий йзменяется и количество выпадающих электронов. Так, например, в присутствии цианида и ротенона продукция супероксида понижается, а при добавлении ингибитора комплекса III антимицин А (приводит к увеличению пула семихинонов), образование АФК в следствии окисления субстрата I или II комплексами увеличивается, в то время как (рис.28).

В условиях высокого Δψ в дыхательной цепи усиливается обратный транспорт элект-ронов, и тогда главным продуцентом супероксида становиться комплекс I. При повыше-нии митохондриального трансмембранного потенциала (Δψ) становится дыхательная цепь становиться более восстановленной, что увеличивает образование АФК в Q-цикле.
Рисунок 28: Электрон-транспортная цепь и сайты генерации АФК. Антиоксидантные системы клетки[15]

Как уже было сказано выше, АФК очень реакционноспособные и легко переходят из одной формы в другую (рис. 29), окисляя при этом различные молекулы. Так, в результате утечки электронов из дыхательной цепи и в реакциях НАД(Ф)Н-оксидазы и ксантин-оксидазы первым образуется супероксид анион радикал, который очень быстро дисмутирует до перекиси водорода.

Из всевозможных восстановленных форм кислорода перекись водорода является самым стабильным соединением и обладает меньшей реакционной способностью, нежели другие формы. Молекула H2O2 способна перемещаться в клетке на значительные расстояния и довольно долго сохраняться в ней. Скорее всего, перекись не достаточно активна, чтобы как-то сильно повредить клеточным структурам, а играет роль сигнальной молекулы. При этом в присутствии активаторов, как-то: ионов меди и ионов железа (образуются при окислении железо - серных центров ряда ферментов кислородными радикалами), - из перекиси и супероксида образуется гидроксильный радикал. Гидроксильный радикал является самым опасным и обладает наивысшей реакционной способностью среди всех АФК. Он мог бы разрушить практически все клеточные структуры, но имеет очень маленькое время жизни (около нескольких наносекунд) и не способен диффундировать на значительные расстояния от места образования.

Также супероксид способен реагировать с оксидом азота (II) (обладает сосудо-расширяющим действием) с образованием активного оксиданта пероксинитрита.

При избытке супероксида, он может переводить трехвалентное железо Fe3+ в двухвалентное Fe2+, которое при взаимодействии с Н2О2, НClО и липоперекисями образует гидроксильный радикал ОН* или липоксильный радикал LO*.

+H+

Fe2+ + H2O2 [(FeIV=O)2+ + H2O] Fe3+ + H2O + HO.
Cu+ + H2O2+ H+ [(CuIII-OH)2+ + H2O] Cu2+ + H2O + HO.

Рисунок 29: Переход из одних форм АФК в другие и воздействие на клетку.

Когда митохондрии перестают справляться с проблемой детоксикации образуемых ими АФК, усиливается дисбаланс между их (АФК) генерацией и нейтрализацией, что приводит к так называемому окислительному стрессу. В результате избыточного образования кислородных радикалов, последние начинают выполнять в основном деструктивные функции, нежели служат в качестве сигнальных молекул. Происходят специфические изменения множества клеточных компонентов: повреждаются мембранные структуры из-за перекисного окисления липидов, происходит окисление белков по остаткам тирозина, цистеина и серина, повреждение ДНК, смещение редокс-потенциала клетки из-за окисления глутатиона и НАД(Ф)Н.

Так, примером действие АФК в условиях, способствующих их избыточному образованию, может служить избыток O2 , особенно при гипербарической оксигенации (лечение кислородом под повышенным давление), сильного спазма (характерен для инфаркта миокарда или инсульта головного мозга) и реперфузии миокарда после периода ишемии (возобновление кровотока после его нарушения из-за тромбоза, т.е. закупорки сосуда), сопровождающаяся развитием повреждений, сопоставимых по степени с возникшими в результате самой ишемии. Механизм образования АФК при реперфузии, вероятно, обусловлен созданием условий, благоприятствующих образованию вторичных радикалов. Во время ишемии парциальное давление кислорода в кардиомиоцитах резко снижается, и это сопровождается переходом окисленных атомов железа Fe3+ в восстановленные Fe2+, а также повышением активности ксантиноксидазы. Оба эти компонента при появлении в цитоплазме больших количеств кислорода в начале реперфузии резко активируют образование ОН*, и возникающее под действием этого радикала повреждение клеточных структур может приобретать необратимый характер, что вызывает развитие апоптоза

Самым распространенным патологическим состоянием, приводящим к значительной вспышке продукции АФК, является гипоксия и последующая реоксигенация. В ходе продолжительной гипоксии происходит множество изменений в активности ряда клеточных ферментов, истощение и повреждение антиоксидантных защитных систем и быстрое восстановление компонентов дыхательной цепи за счет обращения АТФ-синтазной реакции, используемой для создания протонного градиента в условиях недостатка кислорода. В результате всех этих изменений при последующей реоксигенации утечка электронов с комплексов дыхательной цепи и генерация супероксида значительно увеличивается.

В условиях нормоксии повышенная генерация активных форм кислорода, приводящая к окислительному стрессу, наблюдается обычно только в очагах воспаления. В данном случае кислородный взрыв обусловлен деятельностью НАДФН-оксидазных систем макрофагов и является жестко регулируемым, оказывая деструктивное влияние только на клетки, на которые направлена иммунная реакция.

Поскольку образование АФК в клетках любых аэробных организмов происходит непрерывно, то клетках должны быть и защитная система против их пагубного влияния.



15.Антиоксиданты.


Защита клетки от избытка кислородных радикалов и снижение вызванных ими окислительных повреждений осуществляется двумя принципиально разными механизмами:

  1. снижение образования первичных АФК (супероксида) путем уменьшения кислорода в клетке или его более быстрого использования дыхательной цепью ввиду снятия ее контроля ∆μН+

  2. функционированием антиоксидантной системы, которая включает антиоксидантные ферменты, низкомолекулярные соединения, образующие редокс-буфер, витамины, альбумины, свободные жирные кислоты и комплексоны ионов металлов (рис. 30).

К нейтрализующим АФК ферментам относятся супероксиддисмутазы (СОД), каталаза и пероксидазы. СОД катализирует дисмутацию двух молекул супероксида с образованием перекиси водорода и O2. Изоформы этого фермента присутствуют во всех клеточных компартментах, где возможно образование супероксида, нейтрализуя O2.-. Образующаяся при дисмутации супероксида перекись нейтрализуется каталазой или глутатион- и тиоредоксин- пероксидазами в пероксисомах.

Внутриклеточный редокс-статус обеспечивается системой тиолов, в первую оче-редь глутатиона (GSH) и тиоредоксина (TRX), которые создают буферную систему для поддержания более восстановленных по сравнению с внеклеточной средой условий.

Глутатион (GSH) и тиоредоксин (TRX) являются важнейшими антиоксидантами в клетке. Глутатион участвует в поддержании редокс-статуса за счет нейтрализации перекиси глутатион-пероксидазой.
Образовавшейся НАДФН+Н+ поставляет Н+ для регенерации восстановленного глутатиона (GSH) из глутатион-дисульфида (GSSG) с помощью глутатион-редуктазы.
В условиях окислительного стресса соотношение GSН/GSSG быстро падает из-за окисления глутатиона, но быстро восстанавливается до исходного уровня. При этом в организме в случае исчерпания GSH в какой-либо ткани, обеспечение может происходить за счет выброса его в кровь из депо (печень) [49]. Тиоредоксин действует как восстановитель дисульфидных связей в белках и донор электронов для TRX-пероксидазы, при это не оказывая влияния на продукцию АФК или количество восстановленного глутатиона. Восстанавливается тиоредоксин с помощью тиоредоксин-редуктазы и НАДФН [50].

Когда митохондрии перестают справляться с проблемой детоксикации АФК, происходит разрушение митохондриальных структур от мембраны до мтДНК. Из АФК только ОН- вызывает повреждения ДНК (окисление оснований, их модификации, повреждение хромосом). Подобные мутации могут привести к патологии и гибели клеток или их злокачественному перерождению (раки, лейкозы).

АФК может повреждать мембраны митохондрий. Так, на первый взгляд не очень опасная молекула пероксида водорода может генерировать гидроксил-радикал в присутствии двухвалентного железа или превращаться в гипохлорит-анион ОСlферментом миелопероксидазой. Как гипохлорит-анион, так и гидроксил-радикал являются сильными окислителями. Они способны модифицировать белки, нуклеиновые кислоты, индуцировать перекисное окисление липидов (от которого наиболее сильно «страдают» полиненасыщенные жирными кислотами, входящими в состав мембранных липидов). Так, при перекисном окисление липидов кислородный радикал, чаще всего это бывает гидроксил-радикал, который хорошо проникает в мембраны, будучи незаряженным, отнимает атом водорода от молекулы жирной кислоты с образованием перекисного радикала жирной кислоты. Этот радикал запускает цепную реакцию, взаимодействуя с другой жирной кислотой, в ходе которой образуются перекись кислоты и новый радикал:

LH + HO . → L . + H2O

L . + O2 → LOO .

LOO . + L′ H → LOOH + L′ . , и так далее.

Таким образом, затрагивается значительное количество клеточных липидов, и повреждаются мембраны. Кроме того, может происходить и амплификация окислительного повреждения за счет распада гидроперекисей на два новых радикала, каждый из которых запускает свою цепь.

Процессы, протекающие до момента образования гипохлорит-аниона или гидроксил-радикала, локализованы в цитоплазме и контролируются цитоплазматическими ферментами или природными водорастворимыми антиоксидантами. Например, таурин способен связывать гипохлорит-анион в форме хлораминового комплекса, дипептид карнозин и его производные нейтрализуют гидроксил-радикал, а такие соединения, как белое ферритин, связывают железо. Большое значение для предотвращения перекисного окисления липидов, инициируемое в гидрофобном пространстве клеточных мембран, и уничтожения радикалов жирных кислот имеет гидрофобный локализованный в мембранах α-токоферол (витамин Е). Его высокая концентрация в биологических мембранах препятствует их повреждению свободными радикалами. Витамин Е обрывает цепные реакции образования липидных пероксилов, превращаясь в радикал, который регенерирует как с помощью активных водорастворимых восстановителей типа аскорбата и глутатиона, так и с помощью гидрофобного убихинола (см. ниже).

АФК бывают трех типов (Ю.А. Владимиров):


  • Первичные (индуцирующие) - образуются при окислении некоторых молекул; к ним относятся оксид азота NO и супероксид О2 -; обладают регуляторным или умеренным антимикробным действием.

  • Вторичные - образуются вследствие атаки супероксида других молекул ;к ним относятся гидроксильный радикал ОН*, липоксильный радикал LO* и пероксинитрит; обладают сильным токсическим действием вследствие своей способности необратимо повреждать мембранные липиды, а также молекулы ДНК, углеводов и белков

  • Третичные - образуются вследствие соединения вторичных радикалов с молекулами антиоксидантов и других легко окисляющихся соединений; их роль может быть различной

В рамках общей концепции окислительного стресса большое значение имеет феномен АФК-индуцированного образования АФК [52]. При этом небольшие количества индуцирующих АФК приводят к падению трансмембранного потенциала и активная генерация вторичных АФК, что приводит к развитию «окислительного взрыва». Предположительно в ходе АФК-индуцированного образования АФК происходит окисление неких белков и регуляторных тиолов, которые изменяют редокс-статус клетки, инициируя неспецифическую проницаемость мембран. Хоть неспецифическую проницаемость и носит обратимый характер, но все же приводит к нарушению функционирования электрон-транспортной цепи, изменению свойств мембран и, в конечном счете, к “окислительному взрыву”.

При повреждении комплекса I дыхательной цепи происходит прямое окисление белков, разрушение железосерных кластеров, нитрозилирование и глутатионилирование, вследствие чего сильно снижается его активность, что происходит, например, при ишемической болезни сердца (и, как следствия, реперфузии).

При повреждении белков наиболее уязвимыми являются следующие аминокислоты: цистеин, метионин, тирозин, триптофан, фенилаланин, валин, лейцин, гистидин, глутамил, пролин, треонон, аргинин, лизин (табл. 3).

Таблица 3: Модификации аминокислот.


аминокислота

Модифицированный продукт


Цистеин

Cys-Cys, HNE-Cys


Метионин

Метионин сульфоксид


Тирозин

дитирозин, нитротирозин, хлоротирозин, dopa


Триптофан

Гидрокси- и нитро-триптофан, кинуренин


Фенилаланин

гидроксифенилаланин


Валин, лейцин

Гидро(перо)ксиды


Гистидин


2-оксогистидин, аспарагин, аспартат, HNE-His


Глутамил


щавеливая кислота, пировиноградная кислота


Пролин


гидроксипролин, пирролидон, глутаминовый семиальдегид


Треонин


2-Amino-3-ketobutyric acid


Аргинин


глутаминовый семиальдегид, хлорамин


Лизин


α-Aminoadipic семиальдегид, хлорамины, MDA-Lys, HNE-Lys, акролеин-Lys, карбоксиметиллизин, pHA-Lys


АФК разрушают белки, разделяя их на меньшии пептиды (рис.30). Это происходит следующим образом.

Гидроксил радикал отнимает притон от -CH(R)- группы белка, образую воду (реакции a и b). Образовавшийся алкил радикал может либо связаться со вторым алкил радикалом (реакция р), либо прореагировать с кислородом, образовав алкил пероксид радикал (реакция с). Далее алкил пероксид радикал, присоединяя протон, образует алкил пероксид. Протон он получает реагируя либо с Fe2+ (реакция g), либо с пероксильным радикалом (НО2*) (реакция f). Алкил пероксид белка может реагировать с таким же пероксидом (дисмутация), высвобождая кислоров и образуя алкокси белок (реакция о). Алкокси белок может также образовываться путем восстановления алкил пероксида либо Fe2+ (реакция g), либо пероксильным радикалом (НО2*) (реакция f).


Рисунок 30: Окисление белков по α-амидному и диамидному путям.
Дальнейшее преобразование алкокси белока может пойти двумя альтернативными путями:

  • α-амидный путь: алкокси белок может преобразовываться в гиброксильную производную (реакция i, j), пептидня связь которой подвергается в дальнейшем расщеплению (реакция k, l),

  • диамидный путь (реакция m).

В итоге исходный белок разделяется на более мелкие пептиды, что приводит к его дисфункции.

АФК значительно влияют на концентрации ионов кальция в матриксе и цитоплазме, провоцируя закачку Са2+ в цитоплазму из внеклеточного пространства и внутриклеточных депо, а в матрикс из цитоплазмы, путем активации кальциевых транспортеров [51].

Еще одно уязвимое место дыхательной цепи - Q-цикл. В двух Q-связывающих сайтах комплекса III происходит генерация убисемихинон анион радикала. Убисемихинон, образовавшийся в Qp сайте, способен реагировать с молекулярным кислородом с образованием убихинона и супероксида:

UQ.– + O2 → UQ + O2.– .

В сайте QN активное взаимодействие радикала с кислородом не наблюдается из-за хорошей стабилизации радикала и его глубокого относительно толщи мембраны расположения, так, что кислороду трудновато до него добраться.

При связывании антимицина А с сайтом QN окисление убисемихинона в сайте Qp предотвращается, увеличивается его время существования, что повышает вероятность формирования O2.–. Супероксид инициирует цепной процесс автоокисления коэнзима, легко окисляя его с образованием новых молекул убисемихинона. Таким образом, одним из главных источников активных форм кислорода в митохондриях является Q-цикл.

Замечательное свойство убисемихинон состоит в том, что образующийся молекулы убисемихинон легко включается в Q-цикл, при этом легко и быстро регенерируя убихинол в ходе постоянно идущего естественного процесса транспорта электронов в дыхательной цепи. Убихинол, свою очередь, проявляет ярко выраженные свойства антиоксиданта, предотвращая перекисное окисление мембранных липидов (см. выше) [35]. Убихинол достаточно эффективно обрывает цепной процесс образования перекос-ных радикалов, превращаясь в убисемихинон, который затем может реагировать с новы-ми липидными радикалами, а также диспропорционировать с образованием UQ и UQH2:

UQH2 + L . / LOO .UQH . + LH / LOOH

UQH . + L . / LOO .UQ + LH / LOOH

UQH . + UQH .UQ + UQH2

В любом случае, образующиеся формы CoQ способны включаться в Q-цикл, и тем самым антиоксидант убихинол постоянно регенерируется.

Кроме явного проявления антиоксидантных свойств путем непосредственного взаимодействия с АФК, убихинол принимает еще и опосредованное, неявное участие в борьбе с клеточными вредителями. Убихинол восстанавливает другой важнейший жирорастворимый антиоксидант – витамина Е: убихинол взаимодействует с α-токофероксил радикалом с образованием убисемихинон радикала, который регенерируется за счет взаимодействия с другими радикалами или включения в Q-цикл дыхательной цепи (рис. 31).

Замечательно то, что антиоксидант убихинол, принимая на себя удар, может регенерироваться, вступая своей окисленной формой в Q-цикл, быстро восстанавливаясь в ходе постоянно идущего естественного процесса транспорта электронов в дыхательной цепи.

В ряде работ также показано участие UQH2 в предотвращении окисления мембранных белков и ДНК [37]. Митохондриальная ДНК является еще одной мишенью для АФК. Высокая концентрация активных форм кислорода в митохондриях и слабая система репарации увеличивают частоту мутаций мтДНК по сравнению с ядерной на порядок. Радикалы кислорода служат причиной специфических замен ЦТ (дезаминирование цитозина) и ГТ (окислительное повреждение гуанина), вследствие чего, возможно, мтДНК богаты АТ-парами. Повреждение мтДНК особенно опасно в связи с постепенным накоплением мутаций, длительным эффектом АФК. В митохондриальном геноме закодирован ряд важнейших уникальных митохондриальных белков и повреждение ответственных за них генов приводит к нарушениям в их экспрессии и последующем функционировании. Прослеживается четкая корреляция между возрастом и накоплением мутаций в мтДНК, падением эффективности дыхания и увеличением продукции АФК, что легло в основу митохондриальной теории старения [53].



Рисунок 31: Про-оксидативные и антиоксидантные свойства кофермента Q [37].




Поделитесь с Вашими друзьями:
1   2   3   4   5   6


База данных защищена авторским правом ©vossta.ru 2019
обратиться к администрации

    Главная страница