Сборник научных трудов под редакцией доктора физико-математических наук А. Н. Горбаня красноярск кгту



страница16/32
Дата09.08.2018
Размер2.19 Mb.
#43456
ТипСборник
1   ...   12   13   14   15   16   17   18   19   ...   32

5. Заключение

В данной работе описаны результаты применения нейросетевых методов обработки информации для решения задач прогнозирования и классификации при обработке климатических данных. Задачи решаются достаточно эффективно и результаты их решения могут быть использованы в дальнейшем. Очень просто выглядит возможность моделирования глобального изменения климата и оценки последствий этого изменения.

К настоящему времени накоплен очень большой опыт по применению нейронных сетей для решения задач в различных проблемных областях – не только в климатологии (здесь это наш первый опыт), но и в медицине, психологии и политологии, диагностике и оптимальном управлении в технических системах и т.д. [9]. Нейронные сети позволяют решать различные неформализованные задачи (задачи, где алгоритм решения неизвестен). Исследователь при этом получает очень эффективную модель проблемной области и может очень просто моделировать различные ситуации, предъявляя сети различные данные и оценивания ответ, выдаваемый сетью. Нейронные сети могут применяться и в ситуациях, когда известен сравнимый по точности прогноза метод решения, но критично, например, время получения результата, поскольку обученная нейронная сеть решает предъявляемую ей задачу очень быстро.

Большинство пользователей (от простых пользователей нейросетевых экспертных систем до специалистов-исследователей в области нейроинформатики), применяющих нейронных сети, отмечают единственный существенный недостаток нейронных сетей. А именно, человеку не понятно, какие "рассуждения" используются внутри нейронной сети при решении задачи. Иными словами, очень трудно понять процесс получения сетью результата. Первый шаг в этом направлении уже сделан. Сеть может количественно оценить влияние входных признаков на точность решения задачи. Ранжируя входные признаки по этим показателям значимости и последовательно исключая наименее значимые (дообучая при этом сеть извлекать нужную информацию из меньшего объема данных), можно получить минимально необходимый для правильного решения задачи набор входных параметров. Это уже дает информацию для содержательного анализа.

В настоящее время ведутся работы по созданию новой технологии, позволяющих не только решать задачи с помощью обучаемых нейронных сетей, но и генерировать вербализованное (на естественном языке) описание процесса решения сетью задачи. Фактически, по таблице экспериментальных данных, описывающих проблемную область, можно будет получить новое знание – явный алгоритм решения поставленной неформализованной задачи.

Авторы благодарны А.Н. Горбаню, Д.И. Назимовой, Л.Ф. Ноженковой за руководство работой.



Работа выполнена при финансовой поддержке Красноярского краевого фонда науки (гранты 6F0181, 7F0113), Министерства науки и технологий РФ (подпрограмма "Перспективные информационные технологии", проект № 05.04.1291) и ФЦП "ИНТЕГРАЦИЯ" (проект № 68, напр. 2.1.).
Литература

  1. Бессолицина Е.П., Какарека С.В., Крауклис А.А., Кремер Л.К. Геосистемы контакта тайги и степи: юг Центральной Сибири. – Новосибирск: Наука, 1991. – 217 с.

  2. Браверман Э.М., Мучник И.Б. Структурные методы обработки эмпирических данных. – М., Наука. Гл. ред. физ.-мат. лит., 1983. – 464с.

  3. Вапник В.Н. Восстановление зависимостей по эмпирическим данным. – М.: Наука, 1979. – 448с.

  4. Гилев С.Е., Коченов Д.А., Миркес Е.М., Россиев Д.А. Контрастирование, оценка значимости параметров, оптимизация их значений и их интерпретация в нейронных сетях // Доклады III Всероссийского семинара “Нейроинформатика и ее приложения”.- Красноярск, 1995. - С.66-78.

  5. Горбань А.Н. Обучение нейронных сетей. М.": изд. СССР-США СП "ParaGraph", 1990. - 160 с.

  6. Горбань А.Н. Проблема скрытых параметров и задачи транспонированной регрессии // Нейроинформатика и ее приложения. Тезисы докладов V Всероссийского семинара. Красноярск: изд. КГТУ, 1997. – с.57-58.

  7. Горбань А.Н., Миркес Е.М. Оценки и интерпретаторы ответа для сетей двойственного функционирования. Вычислительный центр СО РАН в г. Красноярске. Красноярск, 1997. - 24 с. (Рукопись деп. в ВИНИТИ 25.07.97, № 2511-В97)

  8. Горбань А.Н., Новоходько А.Ю., Царегородцев В.Г. Нейросетевая реализация транспонированной задачи линейной регрессии // Нейроинформатика и ее приложения. Тезисы докладов IV Всероссийского семинара, 5-7 октября 1996 г. Красноярск: изд. КГТУ, 1996. – с.37-39.

  9. Горбань А.Н., Россиев Д.А. Нейронные сети на персональном компьютере. –Новосибирск: Наука (Сиб. отделение), 1996. – 276с.

  10. Загоруйко Н.Г., Елкина В.Н., Лбов Г.С. Алгоритмы обнаружения эмпирических закономерностей. – Новосибирск: Наука, 1985. – 110с.

  11. Кендалл М., Стьюарт А. Статистические выводы и связи. – М.: Наука, 1973. – 900с.

  12. Кендалл М., Стьюарт А. Многомерный статистический анализ и временные ряды. – М.: Наука, 1976. – 736 с.

  13. Ландшафты юга Восточной Сибири. Карта м-ба 1: 1 500 000 / Ред. В. Б. Сочава. – М.:ГУГК, 1977.

  14. Лбов Г.С. Методы обработки разнотипных экспериментальных данных. – Новосибирск: Наука, 1981. – 157с.

  15. Мильков Ф. Н. Лесостепной ландшафт и его зональное подразделение / Изв. АН СССР. Сер. геогр., № 5, 1951. С. 3-14.

  16. Назимова Д.И., Молокова Н.И., Джансеитов К.К. Высотная поясность и климат в горах южной Сибири / География и природные ресурсы., № 2, 1981. С. 68-78.

  17. Рао С.Р. Линейные статистические методы. – М.: Наука, 1968. – 548 с.

  18. Царегородцев В.Г. Транспонированная регрессия в задаче интерполяции свойств химических элементов. // Вестник КГТУ. Информатика, вычислительная техника, управление. Сб. научных трудов / Красноярск: КГТУ. 1997. 139с. – с.31 36.

  19. Gorban A.N., Novokhodko A.Yu. Neural Networks In Transposed Regression Problem, Proc. of the World Congress on Neural Networks, Sept. 15-18, 1996, San Diego, CA, Lawrence Erlbaum Associates, 1996, pp. 515-522.

  20. Solomon A. M. and Cramer W. Biospheric Implications of Global Environmental Change / Repr. From Solomon et al. Vegetation Dynamics and Global Change. Chapman and hall, London, 1976. p. 25-51.

  21. Tchebakova N.M., Mousured R.A., Leemans R. and Nazimova D.I. Possible Vegetation Shifts in Siberia under Climatic Change. / Impacts of Climate Change on Ecosystems, 1995. p. 67-83.

  22. Tchebakova N.M., Mousured R.A. and Nazimova D.I. A Siberian Vegetation Model Based on Climatic Parameters / Can. J. For. Res. 24, 1994. p. 1597-1607.

  23. Walter, Hand Box. Global Classification of Natural Terrestrial Ecosystem / Vegetatio. 32 (2), 1976. p. 75-81.

  24. Кирдин А.Н., Новоходько А.Ю., Царегородцев В.Г. Глава 7. Скрытые параметры и транспонированная регрессия // Нейроинформатика / А.Н.Горбань, В.Л.Дунин-Барковский, А.Н.Кирдин, Е.М.Миркес и др. Новосибирск: Наука, 1998.

  25. Миркес Е.М. Глава 9. Логически прозрачные нейронные сети и производство явных знаний из данных // Нейроинформатика / А.Н.Горбань, В.Л.Дунин-Барковский, А.Н.Кирдин, Е.М.Миркес и др. Новосибирск: Наука, 1998.

  26. Горбань А.Н. Глава 1. Возможности нейронных сетей // Нейроинформатика / А.Н.Горбань, В.Л.Дунин-Барковский, А.Н.Кирдин, Е.М.Миркес и др. Новосибирск: Наука, 1998.

  27. Горбань А.Н. Глава 2. Решение задач нейронными сетями // Нейроинформатика / А.Н.Горбань, В.Л.Дунин-Барковский, А.Н.Кирдин, Е.М.Миркес и др. Новосибирск: Наука, 1998.

  28. Горбань А.Н. Глава 3. Быстрое дифференцирование, двойственность и обратное распространение ошибки // Нейроинформатика / А.Н.Горбань, В.Л.Дунин-Барковский, А.Н.Кирдин, Е.М.Миркес и др. Новосибирск: Наука, 1998.




Каталог: Library
Library -> Аппендицит
Library -> Методические рекомендации для доаудиторной подготовки к практическим занятиям по инфекционным болезням
Library -> Нормы сроков службы стартерных свинцово-кислотных аккумуляторных батарей автотранспортных средств и автопогрузчиков
Library -> Что дает страхование ответственности перевозчика
Library -> Сообщения информационных агентств
Library -> Закон республики таджикистан о документах, удостоверяющих личность


Поделитесь с Вашими друзьями:
1   ...   12   13   14   15   16   17   18   19   ...   32




База данных защищена авторским правом ©vossta.ru 2022
обратиться к администрации

    Главная страница