Система нормативных документов в строительстве


ТРЕБОВАНИЯ К СООРУЖЕНИЮ ГАЗОПРОВОДОВ В ОСОБЫХ ПРИРОДНЫХ И КЛИМАТИЧЕСКИХ УСЛОВИЯХ



страница6/27
Дата09.08.2018
Размер2.34 Mb.
#43438
ТипРеферат
1   2   3   4   5   6   7   8   9   ...   27

ТРЕБОВАНИЯ К СООРУЖЕНИЮ ГАЗОПРОВОДОВ В ОСОБЫХ ПРИРОДНЫХ И КЛИМАТИЧЕСКИХ УСЛОВИЯХ

Многолетнемерзлые грунты


5.27 Проектирование газопроводов, прокладываемых в районах с многолетнемерзлыми грунтами, выполняют в соответствии с требованиями СНиП 42-01 и СНиП 2.02.04.

5.28 Основным принципом при прокладке газопроводов в многолетнемерзлых грунтах является создание такого температурного режима их эксплуатации, при котором воздействие подземного газопровода на окружающий грунт было бы минимальным с точки зрения нарушений естественного теплового режима грунтового массива в зоне прохождения газопроводов.

5.29 Глубина заложения газопровода выбирается так, чтобы температура стенки трубы была выше минус 15 °С в процессе эксплуатации при рабочем давлении.

5.30 При резко отличающихся между собой свойствах грунта вдоль трассы газопровода высота песчаного основания под газопроводом принимается не менее 20 см на длине в каждую сторону от места стыковки разнородных грунтов не менее 50 диаметров газопровода; присыпка в этом случае должна осуществляться на высоту не менее 30 см.

5.31 Конструкция ввода газопровода должна обеспечивать возможность взаимных перемещений газопровода и зданий из-за температурных перемещений газопровода и осадок зданий или грунта.

Подрабатываемые территории


5.32 При проектировании газопроводов, прокладываемых в районах, где проводились, проводятся или предусматриваются горные разработки, следует руководствоваться требованиями СНиП 42-01, ГОСТ Р 12.3.048.

5.33 Трасса газопровода предусматривается преимущественно вне проезжей части территории с учетом возможного вскрытия траншей в период интенсивных деформаций земной поверхности в результате горных выработок.

5.34 Прочность и устойчивость газопроводов, проектируемых для прокладки на подрабатываемых территориях, обеспечивается за счет:

- увеличения подвижности газопровода в грунте;

- снижения воздействия деформирующегося грунта на газопровод.

Для обеспечения подвижности газопровода в грунте и снижения воздействия деформирующегося грунта на газопровод предусматриваются: непрямолинейная укладка газопровода по дну траншеи; применение малозащемляющих материалов для засыпки траншей после укладки труб.

В качестве малозащемляющих материалов для засыпки траншей газопровода применяют песок, песчаный грунт и другой грунт, обладающий малым сцеплением частиц.

Протяженность зоны защиты газопровода определяется длиной мульды сдвижения, увеличенной на 150 диаметров газопровода в каждую сторону от ее границы.



5.35 Переходы газопроводов через реки, овраги и железнодорожные пути в выемках, а также в местах, где возможно образование провалов и трещин, рекомендуется предусматривать надземными из стальных труб.

5.36 На газопроводах в пределах подрабатываемых территорий рекомендуется предусматривать дополнительную установку контрольных трубок на крутоизогнутых углах поворота и в местах разветвления сети.

Для предохранения от механических повреждений контрольные трубки в зависимости от местных условий должны быть выведены под ковер или другое защитное устройство.


Сейсмические районы


5.37 При проектировании газопроводов из полиэтиленовых труб для строительства в районах с сейсмичностью свыше 8 баллов руководствуются требованиями СНиП 42-01 и СНиП II-7.

5.38 На участках пересечения трассой газопровода активных тектонических разломов рекомендуется применять надземную прокладку из стальных труб.

5.39 Переходы газопроводов через реки, овраги и железнодорожные пути в выемках рекомендуется предусматриваться также надземными из стальных труб.

5.40 Контрольные трубки рекомендуется дополнительно предусматривать в местах врезки газопроводов, на крутоизогнутых углах поворота и в местах расположения соединений «полиэтилен-сталь».

Районы с пучинистыми, просадочными и набухающими грунтами


5.41 При проектировании газопроводов для районов с пучинистыми, просадочными и набухающими грунтами руководствуются требованиями СНиП 42-01 и СНиП 2.02.01.

5.42 Глубина прокладки газопроводов при одинаковой степени пучинистости, набухаемости или просадочности по трассе принимается до верха трубы:

- в среднепучинистых, средненабухающих, сильнопучинистых и II типа просадочности - не менее 0,8 глубины промерзания, но не менее 0,9 м;

- в чрезмернопучинистых и сильнонабухающих - не менее 0,9 глубины промерзания, но не менее 1,0 м.

Прокладка газопроводов в слабопучинистых, слабонабухающих и I типа просадочности грунтах должна предусматриваться в соответствии с требованиями СНиП 42-01.



5.43 Прокладка газопроводов в грунтах неодинаковой степени пучинистости, набухаемости или просадочности по трассе (резко меняющийся состав грунта, изменение уровня грунтовых вод, переход газопровода из проезжей части дороги в газон и др.), а также в насыпных грунтах принимается до верха трубы - не менее 0,9 глубины промерзания, но не менее 1,0 м.

5.44 Значения дополнительных напряжений, обусловленных прокладкой газопроводов в пучинистых, просадочных или набухающих грунтах, определяются расчетом.

РАСЧЕТ ГАЗОПРОВОДОВ НА ПРОЧНОСТЬ И УСТОЙЧИВОСТЬ


5.45 Расчет газопроводов на прочность и устойчивость положения (против всплытия) включает:

- определение размеров труб по рабочему (нормативному) давлению;

- проведение поверочного расчета принятого конструктивного решения, т.е. оценка допустимости назначенных радиусов упругого изгиба газопровода и температурного перепада;

- определение необходимой величины балластировки;

- обеспечение кольцевой формы поперечного сечения (предельно допустимой величины овализации).

Прочность и устойчивость газопроводов обеспечивается также на всех стадиях строительства и испытаний.



5.46 При расчетах на прочность и устойчивость газопроводов из полиэтиленовых труб срок службы принимается равным 50 годам.

Расчетные характеристики материала газопроводов


5.47 Расчетными характеристиками материала газопроводов являются: минимальная длительная прочность, определяемая по ГОСТ Р 50838, модуль ползучести материала трубы, коэффициент линейного теплового расширения, коэффициент Пуассона.

5.48 Минимальная длительная прочность согласно ГОСТ Р 50838 должна приниматься для труб из:

- ПЭ 80 - 8,0 МПа;

- ПЭ 100 - 10,0 МПа.

5.49 Модуль ползучести материала труб для срока службы газопровода 50 лет принимается в зависимости от температуры эксплуатации по графикам, приведенным на рисунке 3, где напряжения в стенке трубы определяются по формуле

0145S10-06847

                                                        (2)

При напряжении в стенке трубы  меньше 1,5 МПа значение модуля ползучести следует принимать по кривой а рисунка 3.

0145S10-06847



а -  = 1,5 МПа; б -  = 2,5 МПа; в -  = 3 МПа; г -  = 4 МПа

Рисунок 3 - Значения модуля ползучести  материала труб для проектируемого срока эксплуатации 50 лет в зависимости от температуры транспортируемого газа

5.50 Коэффициент линейного теплового расширения материала труб принимается равным:

 = 2,210-4 (C-1).

Коэффициент Пуассона материала труб должен приниматься равным  = 0,43.

Буквенные обозначения величин и единицы их измерения, принятые в расчетах на прочность и устойчивость, приведены в приложении В.


Нагрузки и воздействия


5.51 Нагрузки и воздействия, действующие на газопроводы, различаются на:

- силовые нагружения - внутреннее давление газа, вес газопровода, сооружений на нем и вес транспортируемого газа, давление грунта, гидростатическое давление и выталкивающая сила воды, нагрузки, возникающие при укладке и испытании;

- деформационные нагружения - температурные воздействия, воздействия предварительного напряжения газопровода (упругий изгиб, растяжка компенсаторов и т.д.), воздействия неравномерных деформаций грунта (просадки, пучение, деформации земной поверхности в районах горных выработок и т.д.);

- сейсмические воздействия.



5.52 Рабочее (нормативное) давление транспортируемого газа устанавливается проектом.

5.53 Собственный вес единицы длины газопровода определяется по формуле

qq = mqg (Н/м),                                                                      (3)

где тq - расчетная масса 1 м трубы, принимаемая по ГОСТ Р 50838.

5.54 Давление грунта на единицу длины газопровода определяется по формуле

qm = mgdehm (H/м).                                                                  (4)

5.55 Гидростатическое давление воды определяется по формуле

pw = pwghw10-6 (МПа).                                                             (5)

5.56 Выталкивающая сила воды на единицу длины газопровода определяется по формуле

qw = (/4)wgde2 (H/м).                                                            (6)



5.57 Температурный перепад в материале труб принимается равным разности между температурой газа в процессе эксплуатации газопровода и температурой, при которой фиксируется расчетная схема газопровода.

5.58 Воздействие от предварительного напряжения газопровода (упругий изгиб по заданному профилю) определяется по принятому конструктивному решению газопровода.

5.59 Воздействия от неравномерных деформаций грунта (просадки, пучение, влияние горных выработок и т.д.) определяются на основании анализа грунтовых условий и возможного их изменения в процессе эксплуатации газопровода.

Проверка прочности принятого конструктивного решения


5.60 Проверка прочности газопровода согласно требованиям СНиП 42-01 состоит в соблюдении следующих условий:

- при действии всех нагрузок силового нагружения

прF  0,4MRS (МПа);                                                         (а)

- при совместном действии всех нагрузок силового и деформационного нагружений

прNS  0,5MRS (МПа);                                                    (в)

npS  0,9MRS (MПa);                                                         

- при совместном действии всех нагрузок силового и деформационного нагружений и сейсмических воздействий

прNS  0,7MRS (МПа);                                                   (с)

npS MRS (MПa).                                                         

При отсутствии 100 %-го контроля сварных швов газопроводов, соединенных сваркой нагретым инструментом встык, правые части условий (а), (в) и (с) принимаются с понижающим коэффициентом 0,95.



5.61 Значения прF , npNS и прS должны определяться по формулам (7) - (9):

0145S10-06847

                                                 (7)

0145S10-06847

                               (8)

0145S10-06847

             (9)

где оу - дополнительные напряжения в газопроводе, обусловленные прокладкой его в особых условиях;

с - дополнительные напряжения в газопроводе, обусловленные прокладкой его в сейсмических районах, при этом используются условия прочности (с).

5.62 Значения дополнительных напряжений, обусловленных прокладкой газопроводов в пучинистых грунтах, должны приниматься в зависимости от глубины промерзания по таблице 3.

Таблица 3



Глубина промерзания, м

Значения дополнительных напряжений, МПа при пучинистости грунта

средней

сильной

чрезмерной

1,0

0,3

0,4

0,5

2,0

0,4

0,6

0,7

3,0

0,5

0,7

0,8

4,0

0,7

0,9

1,0

5.63 Значения дополнительных напряжений, обусловленных прокладкой газопроводов в средненабухающих грунтах и грунтах II типа просадочности, равны 0,6 МПа, в сильнонабухающих грунтах и на подрабатываемых территориях - 0,8 МПа.

Дополнительные напряжения учитываются в пределах рассматриваемого участка и на расстояниях 40de в обе стороны от него.

Дополнительные напряжения при прокладке газопроводов в слабонабухающих и слабопучинистых грунтах, в грунтах I типа просадочности не учитываются.

5.64 Значения дополнительных напряжений, обусловленных прокладкой газопроводов в сейсмических районах, определяются по формуле

0145S10-06847

                                                  (10)

5.65 Значения коэффициента защемления газопроводов в грунте m0, скоростей распространения продольных сейсмических волн и сейсмических ускорений ас определяются по таблицам 4 и 5.

Таблица 4



Грунты

Коэффициент защемления газопровода в грунте т0

Скорость распространения продольной сейсмической волны vc, км/с

Насыпные, рыхлые пески, супеси, суглинки и другие, кроме водонасыщенных

0,50

0,12

Песчаные маловлажные

0,50

0,15

Песчаные средней влажности

0,45

0,25

Песчаные водонасыщенные

0,45

0,35

Супеси и суглинки

0,60

0,30

Глинистые влажные, пластичные

0,35

0,50

Глинистые, полутвердые и твердые

0,70

2,00

Лесс и лессовидные

0,50

0,40

Торф

0,20

0,10

Низкотемпературные мерзлые (песчаные, глинистые, насыпные)

1,00

2,20

Высокотемпературные мерзлые (песчаные, глинистые, насыпные)

1,00

1,50

Гравий, щебень и галечник

См. примеч. 2

1,10

Известняки, сланцы, песчаники (слабовыветренные и сильновыветренные)

То же

1,50

Скальные породы (монолиты)

»

2,20

Примечания:

1. В таблице приведены наименьшие значения vc, которые уточняют при изысканиях.

2. Значения коэффициента защемления газопровода принимают по грунту засыпки.


Таблица 5

Сила землетрясения, баллы

7

8

9

10

Сейсмическое ускорение ас, см/с2

100

200

400

800

5.66 Для газопроводов, прокладываемых в обычных условиях, зависимости между максимально допустимым температурным перепадом и минимально допустимым радиусом упругого изгиба при температуре эксплуатации 0 °С для различных значений SDR и MRS даны на рисунках 4 - 6.

0145S10-06847





Рисунок 4 - Максимально допустимый отрицательный температурный перепад в зависимости от отношения радиуса упругого изгиба к наружному диаметру газопровода при температуре эксплуатации 0 °С и рабочем давлении 0,3 МПа для SDR 11 и различных MRS

0145S10-06847





Рисунок 5 - Максимально допустимый отрицательный температурный перепад в зависимости от отношения радиуса упругого изгиба к наружному диаметру газопровода при температуре эксплуатации 0 °С и рабочем давлении 0,6 МПа для SDR 11 и различных MRS

0145S10-06847





Рисунок 6 - Максимально допустимый отрицательный температурный перепад в зависимости от отношения радиуса упругого изгиба к наружному диаметру газопровода при температуре эксплуатации 0 °С и рабочем давлении 0,3 МПа для SDR 17,6 и различных MRS

Определение необходимой величины балластировки


5.67 Для обеспечения проектного положения газопроводов на подводных переходах, на участках прогнозного обводнения, на периодически обводняемых участках применяются следующие виды балластировки:

- пригрузы из высокоплотных материалов (железобетон, чугун и др.);

- грунт обратной засыпки, закрепляемый нетканым синтетическим материалом (НСМ);

- пригрузы из синтетических прочных тканей, наполненные минеральным грунтом или цементно-песчанной смесью.

5.68 При балластировке газопровода пригрузами из высокоплотных материалов (железобетон, чугун и др.) расстояния между ними должны быть не более определяемых условиями:

0145S10-06847

                                                (11)

0145S10-06847

    (12)

где нагрузка от упругого отпора газопровода qизг при свободном изгибе газопровода в вертикальной плоскости должна определяться по формулам:

для выпуклых кривых

0145S10-06847

                                          (13)

для вогнутых кривых



0145S10-06847

                                        (14)

5.69 Значения коэффициента надежности устойчивого положения для различных участков газопровода принимаются по таблице 6.

Таблица 6



Участок газопровода

Значение a

Обводненные и пойменные за границами производства подводно-технических работ, участки трассы

1,05

Русловые участки трассы, включая прибрежные участки в границах производства подводно-технических работ

1,10

Коэффициент надежности по материалу пригруза принимается:

- для железобетонных грузов и мешков с цементно-песчаной смесью - 0,85;

- для чугунных грузов - 0,95.

Вес пригруза определяется по соответствующим стандартам или ТУ.

5.70 При балластировке газопровода грунтом обратной засыпки, закрепляемым нетканым синтетическим материалом (НСМ), высота грунта, закрепляемого в траншее НСМ (расстояние от оси трубы до верха закрепляемого НСМ грунта), должна быть не менее величины, определяемой формулой

0145S10-06847

                                                    (15)

где                                                 0145S10-06847





0145S10-06847



с = 2kqгрtg(0,7),

где                                                



k - безразмерный коэффициент, численно равный внешнему диаметру трубы, м.

Значения сгр, , гр и е принимаются по результатам инженерных изысканий по трассе газопровода. Допускается определение этих величин по соответствующей нормативно-технической документации.

Если полученная по формуле (15) величина Н0 меньше глубины заложения газопровода, определяемой требованиями СНиП 42-01, то принимается глубина заложения газопровода, регламентируемая этим документом.

Обеспечение допустимой овализации и устойчивости круглой формы поперечного сечения газопровода


5.71 Для обеспечения допустимой овализации поперечного сечения газопровода согласно требованиям СНиП 42-01 должно соблюдаться условие

0145S10-06847

                                (16)

где коэффициент  принимается равным:

- при укладке на плоское основание - 1,3;

- при укладке на спрофилированное основание - 1,2.

Полная погонная эквивалентная нагрузка Q вычисляется по формуле

                                                     (17)

где i - коэффициенты приведения нагрузок;



Qi - составляющие полной эквивалентной нагрузки.

Параметр жесткости сечения газопровода D определяется по формуле



0145S10-06847

                                     (18)

Внешнее радиальное давление ре принимается равным:

- для необводненных участков - нулю;

- для обводненных участков - pw.



5.72 Составляющие полной погонной эквивалентной нагрузки определяются по формулам (19) - (23):

от давления грунта



                                                          (19)

где значения коэффициента kгр в зависимости от глубины заложения газопровода и вида грунта определяются по таблице 7;

Таблица 7


Глубина заложения газопровода, м

Значения коэффициента kгр для грунтов

Песок, супесь, суглинок твердый

Суглинок тугопластичный, глина твердой консистенции

0,5

0,82

0,85

1,0

0,75

0,78

2,0

0,67

0,70

3,0

0,55

0,58

4,0

0,49

0,52

5,0

0,43

0,46

6,0

0,37

0,40

7,0

0,32

0,34

8,0

0,29

0,32

от собственного веса газопровода

Q2 = 1,1qq (Н/м);                                                          (20)

от выталкивающей силы воды на обводненных участках трассы



Q3 = 1,2qw (Н/м);                                                          (21)

от равномерно распределенной нагрузки на поверхности засыпки



Q4 = 1,4qvdekн (Н/м),                                                       (22)

где 0145S10-06847



Значение интенсивности равномерно распределенной нагрузки на поверхности грунта qv при отсутствии специальных требований принимают равным 5,0 кН/м2;

от подвижных транспортных средств

Q5 = тqтde (Н/м),                                                           (23)

где коэффициент т принимается равным:

- для нагрузки от автомобильного транспорта - 1,4;

- для нагрузки от гусеничного транспорта - 1,1;

нагрузка qт принимается в зависимости от глубины заложения газопровода по рисунку 7.

0145S10-06847



1 - для нагрузки от автомобильного транспорта; 2 - для нагрузки от гусеничного транспорта

Рисунок 7 - Зависимость нагрузки от транспортных средств, от глубины заложения газопровода при нерегулярном движении транспорта

Для газопроводов, укладываемых в местах, где движение транспортных средств невозможно, величина тqт принимается равной 5000 Н/м2.



5.73 Значения коэффициентов приведения нагрузок 1 и 2 принимаются в зависимости от вида укладки по таблице 8.

Таблица 8



Вид укладки

1

2

Укладка на:







плоское основание спрофилированное с углом охвата:

0,75

0,75

70°

0,55

0,35

90°

0,50

0,30

120°

0,45

0,25

Значения коэффициентов 3, 4 и 5 принимаются равными:

3 = 4 = 5 = 1.



5.74 Для обеспечения устойчивости круглой формы поперечного сечения газопровода соблюдается условие

0145S10-06847

                                            (24)

В качестве критической величины внешнего давления должно приниматься меньшее из двух значений, определенных по формулам (25), (26):

Ркр = 0,7(DEгр)0,5 (МПа);                                             (25)

Ркр = D + 0,143Eгр (МПа).                                            (26)

Примеры расчета на прочность и устойчивость приведены в приложении Г.



Каталог: files -> naks
naks -> Правила по охране труда при техническом обслуживании и ремонте грузовых вагонов и рефрижераторного подвижного состава
naks -> Российское акционерное общество энергетики и электрификации «еэс россии»
naks -> Система нормативных документов в строительстве
naks -> Министерство топлива и энергетики
naks -> Инструкция по безопасному ведению сварочных работ при ремонте нефте и продуктопроводов под давлением
naks -> Горелки пылеугольные паровых стационарных котлов
naks -> В данной информации подготовлена фгуп «Специальное конструкторско-технологичсское бюро башенного краностроения»
naks -> Российское акционерное общество энергетики и электрификации «еэс россии»
naks -> Министерство нефтеперерабатывающей и нефтехимической промышленности СССР


Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   ...   27




База данных защищена авторским правом ©vossta.ru 2022
обратиться к администрации

    Главная страница