Ткань космоса: Пространство, время и структура реальности



страница20/34
Дата04.05.2018
Размер9.31 Mb.
1   ...   16   17   18   19   20   21   22   23   ...   34

    Таблица 12.1 Три поколения (семьи) фундаментальных частиц и их массы (в единицах масс протона). Известно, что величины масс нейтрино не равны нулю, но их точные величины пока ускользали от экспериментального определения.
Колебание струны одним особым способом может иметь свойства электрона, в то время как струна, колеблющаяся другим способом, может иметь свойства up-кварка, down-кварка или любого другого семейства частиц из Таблицы 12.1. Это не значит, что "электронная струна" составляет электрон, или up-кварковая струна составляет up-кварк, или down-кварковая струна составляет down-кварк. Вместо этого единственный вид струны может отвечать за великое множество частиц, поскольку струна может выполнять великое множество способов колебаний.

Как вы можете видеть, это представляет потенциально гигантский шаг в направлении унификации. Если теория струн верна, кружащий голову и делающий стеклянными глаза список частиц в Таблице 12.1 представляется колебательным репертуаром единственного базового ингредиента. Метафорически, различные ноты, которые могут быть сыграны на единственном виде струн могут отвечать за все различные частицы, которые были обнаружены. На ультрамикроскопическом уровне вселенная будет сродни симфонии струн, чьи вибрации дают существование материи.

Это восхитительно элегантная система для объяснения частиц в Таблице 12.1, но кроме того, предложенные теорией струн унификации идут еще дальше. В Главе 9 и в нашем обсуждении выше мы рассмотрели, как силы природы переносятся на квантовом уровне другими частицами, частицами-переносчиками, которые собраны в Таблице 12.2. Теория струн отвечает за частицы-переносчики точно так же, как она отвечает за частицы материи. А именно, каждая частица-переносчик является струной, которая проявляет специфический способ колебаний. Фотон является вибрацией струны одним особым способом, глюон есть колебание струны другим способом. И, что имеет первоочередную важность, что показали Шварц и Шерк в 1974, имеется особая колебательная мода, которая имеет все свойства гравитона, так что гравитационная сила включается в квантовомеханическую схему теории струн. Таким образом, не только частицы материи возникают из вибрирующих струн, но так же и частицы-переносчики – даже частица-переносчик гравитации.


Взаимодействие (сила) Частица-переносчик Масса

Сильное Глюон 0

Электромагнитное Фотон 0

Слабое W; Z 86; 97

Гравитационное Гравитон 0

    Таблица 12.2 Четыре силы (взаимодействия) природы вместе со связанными с ними частицами и их массами в единицах массы протона. (В действительности имеется две W-частицы – одна с зарядом +1 и одна с зарядом –1 – которые имеют одинаковую массу; для простоты мы пренебрегаем этими деталями и отмечаем каждую как W-частицу).
Итак, помимо обеспечения первого успешного подхода к соединению гравитации и квантовой механики, теория струн обнаруживает свою мощь, обеспечив единое описание для всей материи и всех взаимодействий. Это то утверждение, которое выбило тысячи физиков из их кресел в середине 1980х; со временем они поднялись и отряхнули с себя пыль, многие поменяли убеждения.
Почему теория струн работает?

Перед разработкой теории струн путь научного прогресса был усыпан неудачными попытками соединить гравитацию и квантовую механику. Так что такое с теорией струн, что позволило ей так сильно преуспеть? Мы описали, как Шварц и Шерк осознали, в значительной степени неожиданно для себя, что один особый способ колебаний струны имеет точно такие правильные свойства, чтобы быть гравитоном, и, как они затем заключили, что теория струн обеспечивает готовую схему для соединения двух теорий. Исторически в самом деле так и было, сила и перспективность теории струн были случайно осознаны, но как объяснение, почему струнный подход преуспевает там, где все другие попытки пасуют, оно оставляет желать лучшего. Рис. 12.2 суммирует конфликт между ОТО и квантовой механикой – на ультракоротких пространственных (и временных) масштабах буйство квантовой неопределенности становится настолько интенсивным, что гладкая геометрическая модель пространства-времени, лежащая в основе ОТО, разрушается – так что вопрос в следующем: Как теория струн решает проблему? Как теория струн нормализует бурные флуктуации пространства-времени на ультрамикроскопических расстояниях?

Главное новое свойство струнной теории в том, что ее основной ингредиент не точечная частица, – точка не имеет размера – а, вместо этого, объект, который имеет пространственную протяженность. Эта разница является ключевой для успеха теории струн в соединении гравитации и квантовой механики.

Дикое буйство, показанное на Рис. 12.2, возникает из применения принципа неопределенности к гравитационному полю; на все меньших и меньших масштабах принцип неопределенности подразумевает, что флуктуации в гравитационном поле будут все больше и больше. На таких экстремально малых масштабах расстояний, однако, мы должны описывать гравитационное поле в терминах его фундаментальных составляющих, гравитонов, почти как на молекулярных масштабах мы должны описывать воду в терминах молекул Н2О. На этом языке буйные неровности гравитационного поля должны мыслиться как большие количества гравитонов, дико прыгающих с места на место, как частицы грязи и пыли, пойманные свирепым торнадо. Теперь, если бы гравитоны были точечными частицами (как всегда представлялось ранее, приводя к краху попыток соединения ОТО и квантовой механики), Рис. 12.2 будет в точности отражать их коллективное поведение: чем короче масштаб расстояний, тем больше перемешивание. Но теория струн меняет это заключение.

В теории струн каждый гравитон есть вибрация струны – чего-то, что не является точкой, а, вместо этого, имеет грубо планковскую длину (10–33сантиметра) в размере.[12] А поскольку гравитоны являются мельчайшими, наиболее элементарными составляющими гравитационного поля, не имеет смысла говорить о поведении гравитационных полей на масштабах меньше планковской длины. Точно так же, как разрешение вашего телевизионного экрана ограничено размером индивидуальных пикселов или зерен, разрешение гравитационного поля в теории струн ограничено размером гравитонов. Таким образом, ненулевой размер гравитонов (и чего-угодно-другого) в теории струн устанавливает предел, грубо масштаба планковской длины, до которого точно гравитационное поле может быть разложено.

Это существенное осознание. Неконтролируемые квантовые флуктуации, проиллюстрированные на Рис. 12.2, возникают только тогда, когда мы рассматриваем квантовую неопределенность на достаточно коротких масштабах длин – масштабах короче планковской длины. В теории, основанной на точечных частицах нулевого размера, такое применение принципа неопределенности оправдано и, как мы видели на рисунке, это приводит нас к диким землям за пределами достижимости ОТО Эйнштейна. Теория, основанная на струнах, однако, включает встроенную защиту от отказов. В теории струн струны являются мельчайшим ингредиентом, так что наше путешествие в ультрамикроскопическую область приходит к концу, когда мы достигаем длины Планка – размера самой струны. На Рис. 12.2 планковский масштаб представлен вторым сверху уровнем; как вы можете видеть, на таких масштабах все спокойно; волнообразные движения в ткани пространства вследствие гравитационного поля все еще подчиняются квантовым дрожаниям. Но дрожания достаточно мягкие, чтобы избежать непоправимого конфликта с ОТО. Точная математическая основа ОТО должна быть модифицирована, чтобы включить эти квантовые волнообразные движения, но это может быть сделано и математика остается осмысленной.

Таким образом, введя ограничения, на сколь малые расстояния мы можем зайти, теория струн вводит ограничения, насколько сильны становятся дрожания гравитационного поля, – и предел оказывается достаточно разумным, чтобы избежать катастрофического конфликта между квантовой механикой и ОТО. Таким образом, теория струн подавляет антагонизм между двумя схемами и оказывается способной впервые соединить их.
Космическая ткань в области малого

Что это значит для ультрамикроскопической природы пространства и пространства-времени в более общем смысле? С одной стороны, это сильно бросает вызов обычному понятию, что ткань пространства и времени непрерывна, – что вы можете всегда разделить расстояние между здесь и там или продолжительность между теперь и тогда пополам и снова пополам, бесконечно деля пространство и время на все более малые доли. Вместо этого, когда вы подходите к планковской длине (длине струны) и планковскому времени (времени, которое требуется свету, чтобы пролететь длину струны) и пытаетесь разделить пространство и время более тонко, вы находите, что это невозможно. Концепция "уменьшения" перестает иметь смысл как только вы достигаете размера наименьшей составляющей космоса. Для точечных частиц нулевой длины это не приводит к ограничению, но поскольку струны имеют размер, для них приводит. Если теория струн верна, обычные концепции пространства и времени, система, в рамках которой имеет место весь наш повседневный опыт, просто неприменимы на масштабах меньше планковского масштаба – масштабах самих струн.

Что касается концепции, которая должна прийти на смену, по ней все еще нет консенсуса. Одна возможность, которая согласуется с изложенным выше объяснением о том, как теория струн запутывает квантовую механику и ОТО, заключается в том, что ткань пространства на планковском масштабе похожа на решетку или сетку, в которой "пространство" между линиями сетки находится вне границ физической реальности. Точно так же, как микроскопический муравей, гуляя по обычному кусочку ткани, будет перепрыгивать с нити на нить, возможно, что движение через пространство на ультрамикроскопических масштабах аналогично требует дискретных прыжков с одной "нити" пространства на другую. Время тоже может иметь зернистую структуру с индивидуальными моментами, тесно упакованными друг к другу, но не сливающимися в бесшовный континуум. При таком образе мыслей концепции все более маленьких пространственных и временных интервалов резко заканчиваются на планковском масштабе. Точно так же, как нет такой вещи, как американская монетка величиной меньше пенни, если ультрамикроскопическое пространство-время имеет сетчатую структуру, то нет такой вещи, как расстояние короче планковской длины или продолжительность короче планковского времени.

Другая возможность заключается в том, что пространство и время не теряют внезапно смысл на экстремально малых масштабах, а вместо этого постепенно модифицируются в иные, более фундаментальные концепции. Сокращение меньше чем до планковского масштаба будет запрещено не потому, что вы вторгаетесь в фундаментальную сетку, а потому, что концепции пространства и времени продолжаются в виде понятий, для которых "сокращение меньше" столь же бессмысленно, как вопрос, не является ли число девять счастливым. Это значит, что мы можем представить себе, что в то время, как привычное макроскопическое пространство и время постепенно трансформируется в их непривычные ультрамикроскопические двойники, многие из их обычных свойств – таких как длина и продолжительность – становятся неприменимыми или бессмысленными. Точно так же, как вы можете разумно изучать температуру и вязкость жидкой воды – концепции, которые применимы к макроскопическим свойствам жидкости, – но когда вы спускаетесь на уровень индивидуальных молекул Н2О, эти концепции теряют смысл, так же, возможно, хотя вы можете разделить область пространства и продолжительность времени пополам и еще раз пополам на повседневном масштабе, когда вы проходите планковский масштаб, происходит трансформация, которая переводит такое деление в бессмысленное.

Многие струнные теоретики, включая меня, сильно подозревают, что что-нибудь в духе указанных возможностей на самом деле происходит, но чтобы идти дальше, мы нуждаемся в описании более фундаментальных концепций, в которые трансформируются пространство и время.* На сегодняшний день этот вопрос остается без ответа, но передовые исследования (описываемые в последней главе) предлагают некоторые возможности с далеко идущими последствиями.
(*)"Я могу заметить, что последователи другого подхода по соединению ОТО и квантовой механики, петлевой квантовой гравитации, которая будет коротко обсуждена в Главе 16, принимают точку зрения, которая недалека от упомянутого выше предположения, – что пространство-время имеет дискретную структуру на мельчайших масштабах".
Деликатные вопросы

Из описаний, которые я давал до настоящего времени, может показаться загадочным, что некоторые физики сопротивляются очарованию теории струн. Наконец-то, есть теория, которая дает надежду на осуществление мечты Эйнштейна и даже больше; теория, которая может успокоить враждебность между квантовой механикой и ОТО; теория с возможностью объединения всей материи и всех сил через описание всего в терминах вибрирующих струн; теория, которая предлагает ультрамикроскопическую область, в которой привычное пространство и время могут быть так же старомодны и изящны, как телефон с дисковым набором; короче говоря, теория, которая обещает дать нам понимание вселенной на совершенно новом уровне. Но не стоит забывать, что никто никогда не видел струну и, исключая некоторые радикальные идеи, обсуждаемые в следующей главе, вероятно, что даже если теория струн верна, никто никогда и не увидит. Струны столь малы, что прямое наблюдение равносильно чтению текста на этой странице с расстояния 100 световых лет: это требует силы разрешения примерно в миллиард миллиардов раз точнее, чем позволяют наши текущие технологии. Некоторые ученые громогласно утверждают, что теория, настолько удаленная от прямой эмпирической проверки, лежит в области философии или теологии, но не физики.

Я нахожу это взгляд недальновидным или, уж по крайней мере, преждевременным. Хотя мы никогда не сможем получить технологию, способную увидеть струны непосредственно, история науки переполнена теориями, которые были проверены экспериментально косвенным образом.[13] Теория струн не скромна. Ее цель и обещания велики. И это возбуждающе и весьма похвально, поскольку если теория претендует на то, чтобы быть теорией нашей вселенной, она должна быть равна реальному миру не только в приблизительном наброске, обсуждавшемся до настоящего времени, но так же и в мельчайших деталях. Как мы теперь будем обсуждать, там и лежат потенциальные проверочные тесты.

В течение 1960х и 1970х занимающиеся частицами физики сделали огромный шаг в понимании квантовой структуры материи и негравитационных сил, которые управляют ее поведением. Схема, к которой они в конце концов пришли через экспериментальные результаты и теоретическое осмысление, называется стандартной моделью физики частиц и основывается на квантовой механике, в которой частицы материи в Таблице 12.1 и частицы взаимодействий в Таблице 12.2 (исключая гравитон, поскольку стандартная модель не включает гравитацию, и включая частицу Хиггса, которая не обозначена в таблицах) все рассматриваются как точечные частицы. Стандартная модель способна объяснять, по существу, все данные, получаемые на атомных ускорителях всего мира, и в течение лет ее изобретатели заслуженно прославлялись с высшими почестями. Даже при этих условиях стандартная модель имеет существенные ограничения. Мы уже обсуждали, как она и все другие подходы, предшествовавшие теории струн, потерпели неудачу с объединением гравитации и квантовой механики. Но имеются также и другие недостатки.

Стандартная модель не может объяснить, почему взаимодействия переносятся точным списком частиц в Таблице 12.2 и почему материя составлена точным списком частиц в Таблице 12.1. Почему имеются три поколения частиц материи и почему каждое поколение содержит те частицы, которые содержит? Почему не два поколения или просто одно? Почему электрон имеет в три раза больший заряд, чем down-кварк? Почему мюон весит в 23,4 раза больше, чем up-кварк, и почему top-кварк весит в 350 000 раз больше электрона? Почему вселенная сконструирована этим рядом кажущихся хаотичными чисел? Стандартная модель принимает частицы из Таблиц 12.1 и 12.2 (еще раз, исключая гравитон) как входные данные, а затем делает впечатляюще точные предсказания о том, как частицы будут взаимодействовать и влиять друг на друга. Но стандартная модель не может объяснить входные данные – частицы и их свойства, – не больше, чем ваш калькулятор может объяснить числа, которые вы вводили в последний раз, когда пользовались им.

Загадочность свойств этих частиц не есть академический вопрос, почему та или иная скрытая деталь произошла тем или иным образом. На протяжении последнего столетия ученые осознали, что вселенная имеет привычные свойства повседневного опыта только потому, что частицы в Таблицах 12.1 и 12.2 имеют точно те свойства, которые имеют. Даже довольно малые изменения масс или электрических зарядов некоторых частиц могли бы, например, сделать их неспособными вовлекаться в ядерные процессы, которые питают звезды. А без звезд вселенная была бы совершенно иным местом. Таким образом, детальные свойства элементарных частиц вплетаются в то, что многие рассматривают как глубочайший вопрос всей науки: Почему элементарные частицы имеют точно правильные свойства, чтобы позволить происходить ядерным процессам, светить звездам, формироваться планетам вокруг звезд и, по меньшей мере, на одной такой планете существовать жизни?

Стандартная модель не может предложить никакого проникновения в этот вопрос, поскольку свойства частиц являются частью требуемых ей входных данных. Теория не сдвинется с пыхтением вперед и не начнет производить результаты, пока свойства частиц не будут определены. Но теория струн в этом отличается. В теории струн свойства частиц определяются способами колебаний струны, так что теория содержит перспективы объяснения.
Свойства частиц в теории струн

Чтобы понять новую объяснительную схему теории струн, нам нужно лучше почувствовать, как вибрации струн производят свойства частиц, так что рассмотрим простейшее свойство частицы, ее массу.

Из Е = mc2 мы знаем, что масса и энергия взаимозаменяемы; как доллар и евро, они являются конвертируемыми валютами (но в отличие от денежных валют, они имеют фиксированный курс обмена, заданный скоростью света, умноженной на себя, c2). Наше выживание зависит от уравнения Эйнштейна, поскольку поддерживающие жизнь солнечное тепло и свет генерируются путем "конвертации" 4,3 миллиона тонн материи в энергию каждую секунду; однажды ядерные реакторы на Земле могут превзойти Солнце, безопасно заставляя работать уравнение Эйнштейна, чтобы обеспечить человечество практически безлимитными поставками энергии.

В этом примере энергия производится из массы. Но уравнение Эйнштейна прекрасно работает и в обратном направлении – в направлении, в котором масса производится из энергии, – и это то направление, в котором теория струн использует уравнение Эйнштейна. Масса частицы в теории струн есть ничто иное, как энергия ее вибрирующей струны. Например, объяснение, которое теория струн предлагает для того, почему одна частица тяжелее, чем другая, таково, что струна, составляющая более тяжелую частицу, колеблется быстрее и более бурно, чем струна, составляющая более легкую частицу. Более быстрые и бурные колебания означают более высокую энергию, а более высокая энергия переводится через уравнение Эйнштейна в большую массу. И наоборот, чем более легкая частица, тем более слабым и менее неистовым является соответствующее колебание струны; безмассовая частица вроде фотона или гравитона соответствует струне, выполняющей наиболее тихий и мягкий способ колебаний, какой может быть.* [14]


(*) "Связь с массой, возникающей из Хиггсова океана, будет обсуждена позже в этой главе".

Другие свойства частицы, такие как ее электрический заряд и ее спин, кодируются через более тонкие свойства колебаний струны. По сравнению с массой эти свойства труднее описать нематематически, но они следуют той же самой основной идее: способ колебаний является "отпечатком пальцев" частицы; все свойства, которые мы используем, чтобы различать одну частицу от другой, определяются способом колебаний соответствующей частице струны.

В ранние 1970е, когда физики анализировали способы колебаний, возникающие в первой инкарнации струнной теории – теории бозонных струн, – чтобы определить виды свойств частиц, предсказываемые теорией, они налетели на корягу. Каждый способ колебаний в теории бозонных струн имел целочисленное значение спина: спин-0, спин-1, спин-2 и так далее. Это была проблема, поскольку, хотя частицы-переносчики имеют значения спина такого сорта, частицы материи (вроде электронов и кварков) нет. Они имеют дробное значение спина, спин-1/2. В 1971 Пьер Рамон из Университета Флориды изложил средство от этого недостатка; тотчас же он нашел способ модифицировать уравнения теории бозонных струн, чтобы допустить также и способы колебаний с полуцелым спином.

Фактически, при ближайшем рассмотрении исследование Рамона вместе с результатами Шварца и его соратника Андре Невё и более поздними достижениями Фердинандо Глоцци, Джоэля Шерка и Дэвида Олива открыли совершенный баланс – новую симметрию – между способами колебаний с различными спинами в модифицированной теории струн. Эти исследователи нашли, что новые способы колебаний возникают парами, чья величина спина отличается на половину единицы. Для каждого способа колебаний со спином-1/2 имеется ассоциированный способ колебаний со спином-0. Для каждого способа колебаний со спином-1 имеется ассоциированный способ колебаний со спином-1/2 и так далее. Связь между целыми и полуцелыми величинами назвали суперсимметрией, и с этими результатами родилась теория суперсимметричных струн или теория суперструн. Около десяти лет позже, когда Шварц и Грин показали, что все потенциальные аномалии, которые угрожали теории струн, уничтожили друг друга, они на самом деле работали в системе теории суперструн, так что революцию, воспламененную их статьей, более правильно называть первой суперструнной революцией. (Для последующего мы часто будем ссылаться на струны и на теорию струн, но это только для краткости; мы всегда имеем в виду суперструны и теорию суперструн).

На этом основании мы теперь можем установить, что будет означать для теории струн выйти за пределы эскизных свойств и объяснить вселенную в деталях. Это сводится к следующему: среди способов колебаний, которые струны могут показывать, должны быть способы, чьи свойства согласуются с соответствующими свойствами известных частиц. Теория содержит моды колебаний с полуцелым спином, но она должна включать моды с полуцелым спином, которые точно подходят к известным частицам материи, как обобщено в Таблице 12.1. Теория содержит моды колебаний со спином-1, но она должна включать моды колебаний со спином-1, которые точно подходят к известным частицам-переносчикам, как обобщено в Таблице 12.2. Наконец, если эксперименты на самом деле откроют частицы со спином-0, такие, как предсказаны для Хиггсовых полей, теория струн должна обеспечить моды колебаний, которые точно подходят к свойствам и этих частиц тоже. Короче говоря, чтобы теория струн была жизнеспособной, ее моды колебаний должны давать и объяснять частицы стандартной модели.

Здесь большие возможности для теории струн. Если теория струн верна, то имеется объяснение для свойств частиц, которые экспериментаторы измерили, и оно находится в резонансном способе колебаний, который струна может исполнить. Если свойства этих способов колебаний подходят к свойствам частиц из Таблиц 12.1 и 12.2, я думаю, что в достоверности теории струн убедятся даже несгибаемые скептики, вне зависимости от того, видел ли кто-нибудь непосредственно протяженную структуру самих струн или нет. И помимо установления ее самой как долгожданной единой теории, с таким соответствием между теорией и экспериментальными данными теория струн обеспечит первое фундаментальное объяснение, почему вселенная такова, какова она есть.

Так как теория струн проходит этот решающий тест?
Слишком много колебаний

Ну, на первый взгляд, теория струн прогорает. Для начала, тут имеется бесконечное число различных способов (мод) колебаний струны с первыми несколькими из бесконечной серии, схематически изображенными на Рис. 12.4. Однако Таблицы 12.1 и 12.2 содержат только конечный список частиц, так что с самого начала мы, оказывается, имеем обширное несоответствие между теорией струн и реальным миром. Более того, когда мы анализируем математически возможные энергии – и, следовательно, массы – этих колебательных мод, мы приходим к другому существенному рассогласованию между теорией и наблюдениями. Массы допустимых мод колебаний струны не похожи на экспериментально измеренные массы частиц, выписанные в Таблицах 12.1 и 12.2. Нетрудно увидеть, почему.

С ранних дней теории струн исследователи осознали, что жесткость струны обратно пропорциональна ее длине (квадрату ее длины, более точно): в то время, как длинные струны легко согнуть, чем короче струна, тем более жесткой она становится. В 1974, когда Шварц и Шерк предложили уменьшить размер струн так, чтобы они стали включать гравитационную силу правильной величины, они, следовательно, предложили также увеличить натяжение струн, – по-всякому, это привело к натяжению около тысячи триллионов триллионов триллионов (1039) тонн, что примерно в 1041 раз больше натяжения средней фортепианной струны. Теперь, если вы представите изгиб мельчайшей, экстремально жесткой струны в одном из все более вычурных способов колебаний на Рис. 12.4, вы осознаете, что чем больше пиков и впадин имеется, тем больше энергии вы должны затратить.
c:\0\tkankosmosa_files\i4634702597

Рис 12.4 Первые несколько примеров способов (мод) колебаний струны.
 И наоборот, раз уж струна вибрирует в такой причудливой моде, она содержит гигантское количество энергии. Таким образом, все способы колебаний струны, кроме простейших, являются высокоэнергетическими, а потому через Е = mc2 соответствуют частицам с гигантскими массами.
И, говоря гигантские, я действительно имею в виду гигантские. Расчеты показывают, что массы колебаний струны следуют сериями, аналогичными музыкальным гармоникам: они все являются кратными фундаментальной массе, массе Планка, почти как высшие тона все являются кратными повторениями фундаментальной частоты или тона. По стандартам физики частиц планковская масса колоссальна – около десяти миллиардов миллиардов (1019) масс протона, грубо порядка массы пылинки или бактерии. Так что возможные массы колебаний струны есть 0 масс Планка, 1 масса Планка, 2 массы Планка, 3 массы Планка и так далее, что показывает, что все массы, кроме 0-массы колебаний струны, чудовищно велики.[15]

Как вы можете видеть, некоторые частицы в Таблицах 12.1 и 12.2 на самом деле являются безмассовыми, но большая часть нет. А ненулевые массы в таблицах находятся дальше от планковской массы, чем султан Брунея от нуждающегося в кредите. Таким образом, мы ясно видим, что массы известных частиц не соответствуют образцам, выработанным теорией струн. Значит ли это, что теория струн вычеркивается? Вы можете так подумать, но это не так. Наличие бесконечного списка мод колебаний, чьи массы становятся все более удаленными от масс известных частиц, является вызовом, который теория должна преодолеть. Годы исследований открыли подающие надежды стратегии, как это сделать.

Для начала заметим, что эксперименты с известными семействами частиц научили нас, что тяжелые частицы имеют тенденцию быть нестабильными; обычно тяжелые частицы быстро разваливаются на поток частиц малой массы, в конце концов генерируя легчайшие и наиболее привычные семейства в Таблицах 12.1 и 12.2.
(Например, top-кварк распадается примерно за 10–24 секунды). Мы ожидаем, что этот урок сохранит справедливость и для "сверхтяжелых" мод колебаний струны, и это объяснит, почему, даже если они массово производились в горячей ранней вселенной, почти никто не уцелел до сегодняшнего дня. Даже если теория струн верна, нашим единственным шансом увидеть сверхтяжелый способ колебаний будет произвести его самим через высокоэнергетические столкновения в ускорителях частиц. Однако, так как сегодняшние ускорители могут достигнуть только энергий, эквивалентных грубо 1000 масс протона, они слишком маломощные, чтобы возбудить любой из самых спокойных способов колебаний теории струн. Таким образом, предсказание теории струн о башне частиц с массами, начинающимися от величины, в несколько миллионов миллиардов раз большей, чем достижимо для сегодняшней технологии, не находится в конфликте с наблюдениями.

Это объяснение также делает ясным, что контакт между теорией струн и физикой частиц будет касаться только самых низкоэнергетических – безмассовых – колебаний струны, поскольку другие находятся далеко за пределами того, что мы можем достигнуть с сегодняшней технологией. Но как быть с фактом, что большинство частиц в Таблицах 12.1 и 12.2 не являются безмассовыми? Это важная проблема, но менее неприятная, чем сначала она может выглядеть. Поскольку планковская масса гигантская, даже наиболее известные массивные частицы, top-кварки, весят всего только 10–17 от планковской массы. Так для электрона его вес составляет около 10–23 от планковской массы. Так что в первом приближении, – применимом с точностью лучше, чем одна часть на 1017, – все частицы в Таблицах 12.1 и 12.2 имеют массы равные нулю планковских масс (почти как самый богатый землянин, в первом приближении, равен нулю в единицах султана Брунея), точно как "предсказано" теорией струн. Нашей целью является улучшить это приближение и показать, что теория струн объясняет мелкие отклонения от нуля планковских масс, характеризующие частицы в Таблицах 12.1 и 12.2. Просто безмассовые способы колебаний не так сильно отклоняются от данных опыта, как вы могли сначала подумать.

Это ободряет, но детальное исследование обнаруживает дальнейшие проблемы. Используя уравнения теории суперструн, физики составили список каждого безмассового способа колебаний струны. Одна из записей является гравитоном со спином-2, и это большой успех, который дал ход целой теме; это обеспечивает, что гравитация является частью квантовой теории струн. Но расчеты также показывают, что имеется много больше безмассовых способов колебаний со спином-1, чем имеется частиц в Таблице 12.2, и имеется много больше безмассовых способов колебаний с полуцелым спином, чем имеется частиц в Таблице 12.1. Более того, список способов колебаний с полуцелым спином не показывает признаков повторяющегося группирования, подобного структуре поколений Таблицы 12.1. Значит, при менее поверхностной проверке кажется все более трудным увидеть, как колебания струн будут вставать в один ряд с известными семействами частиц.

Таким образом, к середине 1980х, в то время как существовали основания пребывать в возбуждении по поводу теории суперструн, также существовали и причины для скепсиса. Несомненно, теория суперструн представила солидный шаг к унификации. Обеспечив первый последовательный подход к соединению гравитации и квантовой механики, она сделала для физики то же, что сделал Роджер Баннистер в 1954 для бега на милю, "выбежав" из четырех минут: он показал, что кажущееся невозможным возможно. Теория суперструн определенно установила, что мы можем прорваться через кажущийся непроходимым барьер, разделяющий два столпа физики двадцатого столетия.

Однако, в попытках идти дальше и показать, что теория суперструн может объяснить детальные свойства материи и сил природы, физики столкнулись с трудностями. Это привело скептиков к заявлению, что теория суперструн, несмотря на весь ее потенциал для унификации, была просто математической структурой без прямого отношения к физической вселенной.

Даже с только что обсужденными проблемами во главе списка недостатков теории суперструн, составленного скептиками, была особенность, которую мне пора ввести. Теория суперструн на самом деле обеспечивает успешное соединение гравитации и квантовой механики, единственное, которое свободно от математической непоследовательности, которая была бедствием всех предыдущих попыток. Однако, хотя это может звучать странно, в первые годы после ее открытия физики нашли, что уравнения теории суперструн не имеют этих завидных свойств, если вселенная имеет три пространственных измерения. Вместо этого, уравнения теории струн математически состоятельны, только если вселенная имеет девять пространственных измерений, или, включая временное измерение, они работают только во вселенной с десятью пространственно-временными измерениями!

В сравнении с этим странно звучащим утверждением сложности в установлении детального соответствия между способами колебаний струн и известными семействами частиц кажутся второстепенной проблемой. Теория суперструн требует существования шести измерений пространства, которых никто никогда не видел. Это не деликатный вопрос - это проблема.

Или они есть?

Теоретические открытия, сделанные в течение первых десятилетий двадцатого века, задолго до выхода теории струн на сцену, намекали, что дополнительные измерения совсем не обязаны быть проблемой. И с доработками конца двадцатого века физики показали, что эти дополнительные измерения способны перекинуть мост через пропасть между способами колебаний струнной теории и элементарными частицами, открытыми экспериментаторами.

Это одна из самых впечатляющих теоретических разработок; посмотрим, как она работает.


Объединение в высших измерениях

В 1919 Эйнштейн получил статью, которую легко можно было выбросить как бред больного. Она была написана малоизвестным немецким математиком по имени Теодор Калуца и в нескольких коротких страницах закладывала подход к объединению двух сил, известных в то время, гравитации и электромагнетизма. Чтобы достигнуть этой цели, Калуца предложил радикально отступить кое от чего настолько основополагающего, настолько полностью считающегося доказанным, что это казалось вне вопросов. Он предположил, что вселенная не имеет три пространственных измерения. Вместо этого, Калуца попросил Эйнштейна и остальное физическое сообщество принять во внимание возможность, что вселенная имеет четыре пространственных измерения, так что вместе со временем она имеет пять пространственно-временных измерений.

Первое, что это вообще означает? Ну, когда мы говорим, что имеется три пространственных измерения, мы имеем в виду, что имеется три независимых направления или оси, вдоль которых вы можете двигаться. Из вашего текущего положения вы можете описать их как влево/вправо, назад/вперед и вверх/вниз; во вселенной с тремя пространственными измерениями любое движение, которое вы предпринимаете, является некоторой комбинацией движений в этих трех направлениях. Эквивалентно, во вселенной с тремя пространственными измерениями вам нужно три блока информации, чтобы определить положение. В городе, например, вам нужна улица, где стоит здание, пересекающая ее улица и номер этажа, чтобы определить, где у вас вечеринка. А если вы хотите показать людям, до какого момента еда еще горячая, вам также надо определить четвертый блок данных: время. Это то, что мы имеем в виду, полагая пространство-время четырехмерным.

Калуца предположил, что в дополнение к осям влево/вправо, назад/вперед и вверх/вниз вселенная на самом деле имеет еще одно пространственное измерение, которое по некоторым причинам никто никогда не видел. Если точно, это означает, что имеется другое независимое направление, в котором вещи могут двигаться, а следовательно, что нам нужно задать четыре блока информации, чтобы определить точное положение в пространстве, и всего пять блоков информации, если мы также определяем время.

Ладно; это то, что предлагала полученная Эйнштейном в апреле 1919 статья.

Вопрос, почему Эйнштейн ее не выбросил? Мы не видим другое пространственное измерение – мы никогда не находили себя бесцельно плутающими, поскольку улица, пересекающая ее улица и номер этажа почему-то недостаточны, чтобы определить адрес, – так почему стоит рассматривать такую ненормальную идею? Ну, вот почему. Калуца обнаружил, что уравнения ОТО Эйнштейна могут быть легко и красиво математически расширены на вселенную, которая имеет на одно пространственное измерение больше. Калуца предпринял это расширение и нашел достаточно естественно, что версия ОТО с большим числом измерений не только включает оригинальные уравнения гравитации Эйнштейна, но вследствие лишнего пространственного измерения также и дополнительные уравнения. Когда Калуца изучил эти дополнительные уравнения, он открыл нечто экстраординарное: дополнительные уравнения были ничем иным, как уравнениями, которые Максвелл открыл в девятнадцатом веке для описания электромагнитного поля! Представив вселенную с одним новым пространственным измерением, Калуца предложил решение того, что Эйнштейн рассматривал как одну из самых важных проблем всей физики. Калуца нашел схему, которая объединила оригинальные уравнения ОТО Эйнштейна с оригинальными уравнениями электромагнетизма Максвелла. Именно поэтому Эйнштейн не выбросил прочь статью Калуцы.

Интуитивно вы можете думать о предложении Калуцы следующим образом. В ОТО Эйнштейн пробудил пространство и время. Поскольку они гнутся и растягиваются, Эйнштейн осознал, что он нашел геометрическое воплощение гравитационной силы. Статья Калуцы наводила на мысль, что геометрическое богатство пространства и времени еще больше. В то время, как Эйнштейн обнаружил, что гравитационные поля могут быть описаны как деформации и рябь в обычных трех пространственных и одном временном измерении, Калуца обнаружил, что во вселенной с дополнительным пространственным измерением будут дополнительные деформации и рябь. И эти деформации и рябь, как показал его анализ, будут в точности годиться для описания электромагнитных полей. В руках Калуцы собственный геометрический подход Эйнштейна ко вселенной продемонстрировал достаточную силу, чтобы объединить гравитацию и электромагнетизм.

Конечно, там все еще была проблема. Хотя математически все разработано, не было – и все еще нет – подтверждения пространственного измерения вне трех, о которых мы все знаем. Так что же, открытие Калуцы было всего лишь курьезом или оно как-то значимо для нашей вселенной? Калуца сильно верил в теорию – он, например, учился плавать путем изучения учебника по плаванию, а затем лишь путем ныряния в море, – но идея о невидимом пространственном измерении, неважно, насколько неотразима теория, все же звучит скандально. Затем в 1926 шведский физик Оскар Кляйн ввел в идею Калуцы новый поворот, который намекает, где дополнительные измерения могут быть скрыты.


Скрытые измерения

Чтобы понять идею Кляйна, представим муравья Филиппа Пети, гуляющего по длинному покрытому резиной туго натянутому канату, растянутому между горами Эверест и Лхоцзе. Разглядываемый с расстояния многих миль, как на Рис. 12.5, канат выглядит как одномерный объект вроде линии – объект, который имеет протяженность только вдоль своей длины. Если мы различили, что маленький червяк ползет вдоль каната навстречу Филиппу, мы дико кричим ему, поскольку он должен будет остановиться впереди за шаг от Филиппа, чтобы избежать беды. Конечно, после мгновенного размышления мы все осознаем, что имеется больше поверхности каната, чем измерение влево/вправо, которое мы можем непосредственно воспринимать. Хотя ее трудно различить невооруженным глазом с большого расстояния, поверхность каната имеет второе измерение: измерение по и против часовой стрелки, измерение, которое "завернуто" вокруг каната. С помощью скромного телескопа это циклическое измерение становится видимым, и мы видим, что червяк может двигаться не только по длинному, развернутому измерению влево/вправо, но также и по короткому, "скрученному" направлению по/против часовой стрелки. Так что в каждой точке каната червяк имеет два независимых направления, по которым он может двигаться (это то, что мы имеем в виду, когда мы говорим, что поверхность каната двумерна*), так что он может безопасно отстраниться от пути Филиппа, или отползая от него вперед, как мы первоначально представляли, или отползая вокруг маленького циклического измерения и пропуская Филиппа мимо.


(*) "Если вы посчитаете все направления влево, вправо, по часовой стрелке и против часовой стрелки отдельно, вы придете к заключению, что червяк может двигаться в четырех измерениях. Но когда мы говорим о "независимых" измерениях, мы всегда группируем те из них, которые лежат вдоль одинаковых геометрических осей – вроде влево и вправо, а также по часовой стрелке и против часовой стрелки".
Канат иллюстрирует, что измерения – независимые направления, в которых что-либо может двигаться, – выступают в двух качественно различающихся вариантах. Они могут быть большими и легко видимыми, как размерность поверхности каната влево/вправо, или они могут быть маленькими и более трудно различимыми, как размерность по/против часовой стрелки, которая закручена вокруг поверхности каната. В этом примере не является большой проблемой увидеть малый циклический пояс на поверхности каната. Все, что нам нужно было, это подходящий увеличительный инструмент. Но, как вы можете представить, чем меньше скрученное измерение, тем более трудно его будет обнаружить. На расстоянии нескольких миль сложность для обнаружения циклического измерения поверхности каната одна; она будет в некоторой степени другая для обнаружения циклического измерения чего-либо столь же тонкого, как зубная нить или узкое нервное волокно.


c:\0\tkankosmosa_files\i39aa9809da

Рис 12.5 На удалении туго натянутый канат или провод выглядит одномерным, хотя в достаточно сильный телескоп его второе, скрученное измерение становится видимым.
Вклад Кляйна заключался в указании, что то, что справедливо для объекта внутри вселенной, может быть справедливо и для ткани самой вселенной. А именно, точно так, как поверхность каната имеет как большое, так и маленькое измерение, так же может быть и у ткани пространства. Может быть, что три известных всем нам измерения – влево/вправо, назад/вперед, вверх/вниз – подобны горизонтальному протяжению каната, большим измерениям, легко видимой их разновидности. Но точно так же, как поверхность каната имеет дополнительное, маленькое, скрученное, циклическое измерение, может быть, что ткань пространства также имеет маленькое, скрученное, циклическое измерение, настолько малое, что никто не имеет достаточно мощного увеличительного оборудования, чтобы обнаружить его существование. Вследствие его ничтожного размера, утверждал Кляйн, это измерение будет скрытым.

Насколько мало малое? Ну, включив определенные свойства квантовой механики в оригинальное предположение Калуцы, математический анализ Кляйна открыл, что радиус дополнительного циклического пространственного измерения, вероятно, будет порядка планковской длины[16], что определенно слишком мало для экспериментальной доступности (самое совершенное современное оборудование не может разрешить что-либо меньшее, чем тысячная часть размера атомных ядер, не достигая планковской длины более чем на фактор в миллион миллиардов). Однако, для воображаемого червяка планковского размера это мельчайшее скрученное циклическое измерение обеспечит новое направление, в котором он может странствовать точно так же свободно, как обычный червяк преодолевает циклическое измерение каната на Рис. 12.5. Конечно, точно так же, как обычный червяк находит, что там не так много места для исследований в направлении по часовой стрелке, прежде чем он окажется в своей стартовой точке, червяк планковской длины, ползущий вдоль скрученного измерения пространства, также будет постоянно возвращаться назад в свою стартовую точку. Но, оставив в стороне длину предпринятого им путешествия, скрученное измерение будет обеспечивать направление, в котором маленький червяк может двигаться так же легко, как он это делает в трех привычных развернутых измерениях.

Чтобы почувствовать интуитивный смысл того, на что это похоже, отметим, что то, на что мы ссылались как на скрученное измерение каната, – направление по/против часовой стрелки, – существует в каждой точке вдоль его протяженного измерения. Земной червяк может ползти вдоль циклического обода каната в любой точке вдоль его протяженной длины, так что поверхность каната может быть описана как имеющая одно длинное измерение с маленьким, циклическим измерением, прикрепленным к каждой точке, как на Рис. 12.6. Этот образ полезно иметь в уме, поскольку он также применим к предложению Кляйна для скрытого дополнительного пространственного измерения Калуцы.

Чтобы увидеть это, изучим еще раз ткань пространства путем последовательного показа его структуры на все меньших масштабах длины, как на Рис. 12.7. При первых нескольких уровнях увеличения ничего нового не обнаруживается: ткань пространства все еще выглядит трехмерной (что, как обычно, мы схематически представляем на печатной странице в виде двумерной сетки). Однако, когда мы опустимся до планковского масштаба, высшего уровня увеличения на рисунке, Кляйн внушает, что становится видимым новое скрученное измерение.




c:\0\tkankosmosa_files\i456d0e6831

Рис 12.6 Поверхность натянутого каната имеет одно длинное измерение с циклическим измерением, присоединенным в каждой точке.
c:\0\tkankosmosa_files\i9b1a9fbc2c

Рис 12.7 Предложение Калуцы-Кляйна заключается в том, что на очень малых масштабах пространство имеет дополнительное циклическое измерение, присоединенное к каждой привычной точке. Точно так же, как циклическое измерение каната существует в каждой точке вдоль его большого, протяженного измерения, циклическое измерение в этом предложении существует в каждой точке в привычных трех протяженных измерениях повседневной жизни.
На Рис. 12.7 мы проиллюстрировали это, дорисовав дополнительное циклическое измерение только в некоторых точках вдоль протяженных измерений (поскольку рисование кругов в каждой точке затемнит рисунок), и вы можете немедленно увидеть сходство с канатом на Рис. 12.6. В предложении Кляйна, следовательно, пространство должно представляться как имеющее три развернутых измерения (из которых мы показали на рисунке только два) с добавленным циклическим измерением, присоединенным к каждой точке. Отметим, что дополнительное измерение не есть выпуклость или петля внутри обычных трех пространственных измерений, как изобразительные ограничения рисунка могут заставить вас подумать. Вместо этого, дополнительное измерение есть новое измерение, полностью отличное от трех, нам известных, которое существует в каждой точке в нашем ординарном трехмерном пространстве, но столь мало, что ускользает от обнаружения даже самыми изощренными нашими инструментами.
С этой модификацией оригинальной идеи Калуцы Кляйн обеспечил ответ на то, как вселенная может иметь более, чем три пространственных измерения повседневного опыта, что дополнительное измерение остается скрытым; схема с тех пор стала известна как теория Калуцы-Кляйна. А поскольку дополнительное измерение пространства было все, что Калуце требовалось, чтобы соединить ОТО и электромагнетизм, теория Калуцы-Кляйна может показаться именно тем, что искал Эйнштейн. В самом деле, Эйнштейн и многие другие стали совершенно одержимы унификацией через новое, скрытое пространственное измерение и был предприняты решительные усилия, чтобы увидеть, будет ли этот подход работать в полных деталях. Но незадолго до этого теория Калуцы-Кляйна столкнулась со своими собственными проблемами. Вероятно, самая яркая из всех заключалась в том, что попытки включить электрон в картину с дополнительным измерением продемонстрировали свою неприменимость.[17] Эйнштейн продолжил барахтаться в схеме Калуцы-Кляйна, по меньшей мере, до начала 1940х, но начальные перспективы подхода так и не материализовались, и интерес постепенно вымер.

Однако, через несколько десятилетий теория Калуцы-Кляйна совершила впечатляющее возвращение.

Теория струн и скрытые размерности

В добавление к трудностям, с которыми теория Калуцы-Кляйна столкнулась при попытке описать микромир, была и другая причина для ученых сомневаться в этом подходе. Многие находили как произвольным, так и экстравагантным постулировать скрытую пространственную размерность. Это не то, как если бы Калуца пришел к идее нового пространственного измерения на основании жесткой цепочки дедуктивных рассуждений. Вместо этого он высосал идею из пальца, а после анализа ее последствий открылись неожиданные связи между ОТО и электромагнетизмом. Таким образом, хотя это было само по себе великое открытие, оно страдало недостатком ощущения неизбежности. Если бы вы спросили Калуцу и Кляйна, почему вселенная имеет пять пространственно-временных измерений, а не четыре, или шесть, или семь, или 7 000, коли на то пошло, они не смогли бы дать ответ, более убедительный, чем "Почему нет?"

Более чем через три десятилетия ситуация изменилась радикально. Теория струн является первым подходом для соединения ОТО и квантовой механики; более того, она имеет потенциал к объединению нашего понимания всех сил и всей материи. Но квантовомеханические уравнения теории струн не работают в четырех пространственно-временных измерениях, ни в пяти, шести, семи или 7 000. Вместо этого по причинам, обсуждающимся ниже в секции "Физика струн и дополнительные измерения", уравнения теории струн работают только в десяти пространственно-временных измерениях – девяти пространственных плюс время. Теория струн требует больше измерений.

Это фундаментально новый вид результата, с которым никогда раньше не сталкивались в истории физики. До струн ни одна теория совсем ничего не говорила о числе пространственных измерений во вселенной. Каждая теория от Ньютона к Максвеллу и к Эйнштейну полагала, что вселенная имеет три пространственных измерения, почти как мы все полагаем, что Солнце взойдет завтра. Калуца и Кляйн предложили поставить это под вопрос, подбросив мысль, что имеется четыре пространственных измерения, но это означало только другое допущение – отличающееся допущение, однако все равно допущение. Теперь же впервые теория струн обеспечила уравнения, которые предсказали число пространственных измерений. Вычисление – не допущение, не гипотеза, не внушенная догадка – определило число пространственных измерений в соответствии с теорией струн, и удивительной вещью оказалось, что вычисленное число равно не трем, а девяти. Теория струн неотвратимо привела нас ко вселенной с шестью дополнительным пространственными измерениями и потому обеспечила убедительную, готовую среду для оплаты счетов по идеям Калуцы и Кляйна.

Оригинальное предложение Калуцы и Кляйна предполагает только одно скрытое измерение, но оно легко обобщается на два, три или даже шесть дополнительных измерений, требуемых теорией струн. Например, на Рис. 12.8а мы заменили дополнительное циклическое измерение одномерной формы из Рис. 12.7 на поверхность сферы, двумерную форму (повторим из обсуждения в Главе 8, что поверхность сферы является двумерной, поскольку вам нужны два блока информации – вроде широты и долготы на земной поверхности, – чтобы определить положение).




c:\0\tkankosmosa_files\i7ad16f4eb2 

(а) (b)


Рис 12.8 Смыкание вселенной с тремя обычными измерениями, представленными сеткой, и (а) двух скрученных измерений в форме пустых сфер, и (b) трех скрученных измерений в форме твердых шаров.
Как и с кругом, вы должны представлять сферу прикрепленной к каждой точке обычных измерений, даже если на Рис. 12.8а, чтобы оставить рисунок ясным, мы нарисовали только те сферы, которые лежат на пересечениях линий сетки. Во вселенной такого сорта вам всего понадобится пять блоков информации, чтобы определить положение в пространстве: три блока, чтобы определить ваше положение в больших измерениях (улица, пересекающая улица, номер этажа) и два блока, чтобы определить ваше положение на сфере (широта, долгота), прикрепленной к этой точке. Безусловно, если радиус сферы мал – в миллиарды раз меньше, чем атом, – последние два блока информации почти не будут иметь значения для относительно больших объектов вроде нас самих. Тем не менее, дополнительная размерность является интегральной частью ультрамикроскопического строения пространственной ткани. Ультрамикроскопическому червяку понадобятся все пять блоков информации и, если мы включим время, ему потребуется шесть блоков информации, чтобы указать, где будет вечеринка и в какое время.

Продвинемся еще на одно измерение дальше. На Рис. 12.8а мы рассмотреди только поверхность сфер. Представьте теперь, что, как на Рис.12.8b, ткань пространства включает также и внутренность сфер, – наш маленький планковского размера червяк может закопаться в сферу, как обычный червяк делает с яблоком, и свободно двигаться через ее внутренности. Чтобы определить положение червяка, теперь требуется шесть блоков информации: три, чтобы определить его положение в обычных протяженных пространственных измерениях, и еще три, чтобы определить его положение в шаре, прикрепленном к данной точке (широта, долгота, глубина проникновения). Вместе со временем, следовательно, это есть пример вселенной с семью пространственно-временными измерениями.

Теперь перепрыгнем дальше. Хотя это невозможно нарисовать, представьте, что в каждой точке в трех протяженных измерениях повседневной жизни вселенная имеет не одно дополнительное измерение как на Рис. 12.7, не два дополнительных измерения, как на Рис.12.8а, не три дополнительных измерения, как на Рис.12.8b, но шесть дополнительных пространственных измерений. Я, конечно, не могу визуализировать это, и я никогда не встречал никого, кто бы смог. Но его смысл ясен. Чтобы определить пространственное положение червяка планковского размера в такой вселенной, требуется девять блоков информации: три, чтобы определить его положение в обычных протяженных измерениях, и еще шесть, чтобы определить его положение в скрученных измерениях, прикрепленных к этой точке. Когда время также принимается во внимание, это оказывается вселенной с десятимерным пространством-временем, как требуется уравнениями теории струн. Если дополнительные шесть измерений скручены в достаточно малые образования, они легко ускользнут от обнаружения.
Форма скрытых размерностей

Уравнения теории струн на самом деле определяют больше, чем просто число пространственных размерностей. Они также определяют виды форм, которые дополнительные размерности могут принимать.[18] На предыдущих рисунках мы сосредоточились на простейших формах – круги, полые сферы, твердые шары, – но уравнения теории струн выбирают существенно более широкий класс шестимерных форм, известных как формы или многообразия или пространства Калаби-Яу. Эти пространства названы в честь двух математиков, Эугенио Калаби и Шинь-Тунь Яу, которые математически открыли их задолго до того, как стала очевидной их применимость к теории струн; грубая иллюстрация одного примера дана на Рис. 12.9а. Надо иметь в виду, что на этом рисунке двумерное изображение иллюстрирует шестимерный объект, и это приводит к большому числу существенных искажений. Даже при этих условиях рисунок дает грубое представление о том, на что похожи указанные формы. Если особая форма Калаби-Яу из Рис. 12.9а составляет дополнительные шесть измерений теории струн, пространство на ультрамикроскомическом масштабе будет иметь вид, иллюстрируемый на Рис.12.9b. Поскольку форма Калаби-Яу будет прилагаться к каждой точке в обычных трех измерениях, вы, и я и кто угодно другой прямо сейчас будет окружен и наполнен этими маленькими формами. Без преувеличения, если вы переходите из одного места в другое, ваше тело будет двигаться через все девять измерений, быстро и одно за другим проходя через целые формы, в среднем делая кажущимся, как будто вы не двигаетесь через дополнительные шесть измерений совсем.




c:\0\tkankosmosa_files\i4bc7a6e091 

(а) (b)


Рис 12.9 (а), Один из примеров форм или пространств Калаби-Яу, (b) Сильно увеличенный участок пространства с дополнительными измерениями в форме мельчайших пространств Калаби-Яу.
Если эти идеи верны, ультрамикроскопическая ткань космоса украшена богатейшей текстурой.
Физика струн и дополнительные измерения

Красота ОТО в том, что физика гравитации контролируется геометрией пространства. С дополнительными пространственными измерениями, предлагаемыми теорией струн, вы, очевидно, догадались, что мощь геометрии для определения физики должна значительно возрасти. И это происходит. Увидим это сначала, рассмотрев вопрос, который я до сих пор обходил стороной. Почему теория струн требует десяти пространственно-временных измерений? Это вопрос, на который трудно ответить нематематически, но я все-таки могу объяснить достаточно, чтобы проиллюстрировать, как он сводится к взаимодействию геометрии и физики.



Представьте струну, которая может колебаться только на двумерной поверхности плоского стола. Струна будет в состоянии осуществлять разнообразные способы колебаний, но только такие, которые включают движения в направлениях вправо/влево и вперед/назад на поверхности стола. Если теперь струне позволить колебаться в третьем направлении, двигаясь в направлении вверх/вниз, покидая поверхность стола, становятся достижимыми дополнительные способы колебаний. Теперь, хотя это тяжело нарисовать более чем в трех измерениях, это заключение – большее количество измерений означает большее количество способов (мод) колебаний – является общим. Если струна может колебаться в четвертом пространственном измерении, она может выполнить больше видов колебаний, чем она могла только в трех измерениях; если струна может колебаться в пятом пространственном измерении, она может проявить больше способов колебаний, чем это было только в четырех измерениях; и так далее. Это важный вывод, поскольку в теории струн имеется уравнение, которое требует, чтобы число независимых способов колебаний удовлетворяло очень точному ограничению. Если ограничение нарушается, математика теории струн разваливается и ее уравнения становятся бессмысленными. Во вселенной с тремя пространственными измерениями число способов колебаний слишком мало и ограничение не выполняется; с четырьмя пространственными измерениями число способов колебаний все еще слишком мало; для пяти, шести, семи или восьми измерение оно все еще слишком мало; но для девяти пространственных измерений ограничение на число способов колебаний выполняется в точности. Именно так теория струн определяет число пространственных измерений.* [19]
(*)"Позвольте мне подготовить вас к одному существенному результату, с которым мы столкнемся в следующей главе. Струнные теоретики десятки лет знали, что уравнения, которые они обычно используют для математического анализа теории струн являются приблизительными (точные уравнения оказывается на практике тяжело идентифицировать и понять). Однако, большинство думает, что приблизительные уравнения были достаточно точны для определения требуемого числа дополнительных измерений. Совсем недавно (и к шоку большинства физиков, работающих в этой области) некоторые струнные теоретики показали, что приближенные уравнения теряют одно измерение; сейчас признано, что теория требует семь дополнительных измерений. Как мы увидим, это не компроментирует материал, обсужденный в этой главе, но показывает, что он годится для более широкой, фактически более унифицированной схемы.[20]"
Хотя это хорошо иллюстрирует взаимодействие геометрии и физики, их объединение в рамках теории струн идет еще дальше и, фактически, обеспечивает способ обращения с критической проблемой, с которой мы сталкивались ранее. Повторим, что в попытках установить детальную связь между модами колебаний струны и известными семействами частиц физики потерпели крах. Они нашли, что имеется слишком много безмассовых способов колебаний струны и, более того, детальные свойства способов колебаний не соотносятся со свойствами известных частиц материи и сил. Но, о чем я не упоминал ранее, поскольку мы еще не обсуждали идею дополнительных измерений, хотя такие вычисления принимали в расчет число дополнительных измерений (отчасти объясняя, почему было найдено так много способов колебаний струн), они не принимали в расчет малого размера и сложной формы дополнительных измерений, – они предполагали, что все пространственные измерения плоские и полностью развернутые, – а это приводит к существенным отличиям.

Струны столь малы, что даже когда дополнительные шесть измерений свернуты в пространство Калаби-Яу, струны все еще колеблются в этих направлениях. По двум причинам это экстремально важно. Первое, это обеспечивает, что струны всегда колеблются во всех девяти пространственных измерениях, и потому ограничение на число способов колебаний продолжает выполняться, даже когда дополнительные измерения тесно скручены. Второе, точно так же, как способы колебаний потока воздуха, продуваемого через трубу, подвергаются воздействию искривлений и поворотов музыкального инструмента, способы колебаний струн подвергаются воздействию искривлений и поворотов в геометрии дополнительных шести измерений. Если вы изменили форму трубы, сделав путь прохождения воздуха более узким или сделав раструб длиннее, способы колебаний воздуха, а следовательно, звук инструмента изменится. Аналогично, если форма и размер дополнительных измерений модифицировались, это также существенно повлияет на точные свойства каждого возможного способа колебаний струны. А поскольку способ колебаний струн определяет ее массу и заряд, это значит, что дополнительные измерения играют стержневую роль в определении свойств частиц.

Это ключевое заключение. Точный размер и форма дополнительных измерений оказывают чрезвычайное воздействие на способы (моды) колебаний струн, а значит на свойства частиц. Поскольку базовая структура вселенной – от формирования галактик и звезд до существования жизни, как мы ее знаем, – чувствительно зависит от свойств частиц, код космоса может быть хорошо записан в геометрии пространства Калаби-Яу.

Мы видели один пример пространства Калаби-Яу на Рис. 12.9, но имеются, по меньшей мере, сотни тысяч других возможностей. Тогда вопрос заключается в том, какую форму Калаби-Яу, если это имеет место, образует часть пространственно-временной ткани, связанная с дополнительными измерениями. Это один из наиболее важных вопросов, стоящих перед теорией струн, поскольку только с определенным выбором формы Калаби-Яу детально определяются свойства колебательных мод струны. На сегодняшний день вопрос остается без ответа. Причина в том, что текущее понимание уравнений теории струн не обеспечивает проникновение в задачу, как выбрать одну форму из многих; с точки зрения известных уравнений каждое пространство Калаби-Яу так же пригодно, как и любое другое. Уравнения даже не определяют размера дополнительных измерений. Поскольку мы не видим дополнительных измерений, они должны быть малы, но вопрос о том, насколько точно малы, остается открытым.

Это фатальный порок теории? Возможно. Но я так не думаю. Как мы будем обсуждать более полно в следующей главе, точные уравнения теории струн ускользали от теоретиков в течение многих лет, так что многие труды использовали приблизительные уравнения. Это позволило взглянуть на огромное число свойств теории струн, но в определенных вопросах, – включая точный размер и форму дополнительных измерений, – приблизительные уравнения терпят нудачу. Поскольку мы продолжаем обострять наш математический анализ и усовершенствовать эти приблизительные уравнения, определение формы дополнительных измерений является первой – и, на мой взгляд, достижимой – целью. До сих пор эта цель остается за пределами достигнутого.

Тем не менее, мы все еще можем спросить, будет ли какой-нибудь выбор формы Калаби-Яу давать моды колебаний струны, которые полностью аппроксимируют известные частицы. И здесь ответ вполне радующий.

Хотя мы далеки от полного исследования каждой возможности, были найдены примеры форм Калаби-Яу, которые приводят к способам колебаний струн в грубом согласии с Таблицами 12.1 и 12.2. Например, в середине 1980х Филип Канделас, Гарри Горовиц, Эндрю Строминджер и Эдвард Виттен (ко физиков, которые осознали применимость пространств Калаби-Яу к теории струн) открыли, что каждая дырка, – термин, используемый в точно определенном математическом смысле, – содержащаяся в пространстве Калаби-Яу, приводит к семейству низкоэнергетических колебательных мод струны. Пространство Калаби-Яу с тремя дырками, следовательно, будет обеспечивать объяснение для повторяющейся структуры семейств элементарных частиц в Таблице 12.1. На самом деле, число таких "трехдырочных" пространств Калаби-Яу было найдено. Более того, среди этих приоритетных пространств Калаби-Яу есть такие, которые также дают точно правильное число частиц-переносчиков, а так же точно правильные электрические заряды и свойства ядерных сил большинства частиц в Таблицах 12.1 и 12.2.

Это чрезвычайно воодушевляющий результат; он никоим образом не подразумевался. В соединении ОТО и квантовой механики могущество теории струн достигло одной цели только чтобы найти, что к ней никак невозможно подойти отдельно от не менее важной цели объяснения свойств известных частиц материи и сил. Исследователи не сдаются, добиваясь блестящих результатов в теории, возможности которой казались неутешительными. Идти дальше и рассчитать точные массы частиц является значительно более манящим. Как мы обсуждали, частицы в Таблицах 12.1 и 12.2 имеют массы, которые отличаются от колебаний струны низшей энергии – нуля планковских масс – менее чем на одну часть на миллион миллиардов. Расчеты таких бесконечно малых отклонений требуют уровня точности, лежащего за пределами того, что мы можем предъявить с нашим сегодняшним пониманием уравнений теории струн.

В действительности, я подозреваю, как делают многие другие струнные теоретики, что малые массы в Таблицах 12.1 и 12.2 возникают в теории струн почти так же, как и в стандартной модели. Повторим из Главы 9, что в стандартной модели Хиггсово поле имеет ненулевую величину во всем пространстве и масса частицы зависит от того, насколько большую тормозящую силу она испытывает, когда она пробирается сквозь океан Хиггса. Аналогичный сценарий, вероятно, разворачивается и в струнной теории. Если гигантское собрание струн колеблется точно правильно скоординированным способом во всем пространстве, они могут обеспечивать однородный фон , который во всех смыслах и итогах будет неотличим от Хиггсова океана. Колебания струн, которые сначала давали нулевую массу, будут тогда обзаводиться малой ненулевой массой через тормозящую силу, которую они испытывают, когда они двигаются и колеблются сквозь струнную версию Хиггсова океана. Отметим, однако, что в стандартной модели тормозящая сила, испытываемая данной частицей, – а потому снабжающая ее массой, – определяется экспериментальными измерениями и является внешним параметром теории. В версии теории струн тормозящая сила – а потому массы способов колебаний – будет происходить из взаимодействий между струнами (поскольку Хиггсов океан будет сделан струнами) и должна быть вычислима. Теория струн, по крайней мере, в принципе, позволяет определить все свойства частиц из самой теории.

Никто этого не завершил, но, как подчеркивалось, теория струн все еще требует очень много работы. Со временем исследователи надеются полностью реализовать громадный потенциал этого подхода к объединению. Мотивация велика, поскольку велика потенциальная награда. При тяжелой работе и существенной удаче теория струн может однажды объяснить фундаментальные свойства частиц и затем объяснить, почему вселенная такова, какова она есть.


Ткань космоса в соответствии с теорией струн

Даже если многое в теории струн все еще лежит вне границ нашего понимания, она уже проявила впечатляющие новые перспективы. Самое поразительное, в преодолении разлома между ОТО и квантовой механикой теория струн обнаружила, что ткань космоса может иметь намного больше измерений, чем мы непосредственно ощущаем, – измерений, которые могут быть ключом к разрешению некоторых самых глубоких тайн вселенной. Более того, теория подразумевает, что привычные понятия пространства и времени, как мы их до сих пор понимали, могут быть не более чем приближениями к более фундаментальным концепциям, которые все еще дожидаются нашего открытия.

В начальные моменты вселенной эти свойства пространственно-временной ткани, которые сегодня доступны только математически, должны были проявляться. Очень рано, когда три привычных пространственных измерения также были малы, вероятно, различие между тем, что мы теперь называем большими измерениями и скрученными измерениями теории струн, было мало или совсем отсутствовало. Их текущее различие в размерах будет следствием космологической эволюции, которая способом, который мы еще не понимаем, могла бы выделить три пространственных измерения как специальные и представить только их для 14 миллиардов лет расширения, обсуждавшегося в предыдущих главах. Заглянув назад во времени еще дальше, увидим, что вся наблюдаемая вселенная будет сокращена к субпланковской области, так что то, что мы характеризовали как размытое пятно (на Рис. 10.6), теперь мы можем идентифицировать как область, где привычное пространство и время еще появляются из более фундаментальных сущностей, – какие бы они ни были, – что текущие исследования и стараются постичь.

Дальнейший прогресс в понимании изначальной вселенной, а потому в определении истоков пространства, времени и стрелы времени, требует существенного усовершенствования теоретического инструментария, который мы используем для понимания теории струн, – цель, которая не слишком давно казалась еще очень удаленной. Как мы теперь увидим, с разработкой М-теории прогресс превзошел многие даже самые оптимистические предсказания.

13 Вселенная на бране

РАЗМЫШЛЕНИЯ О ПРОСТРАНСТВЕ И ВРЕМЕНИ В М-ТЕОРИИ


Каталог: art -> theory -> Briyan Grin
art -> Вилена александровна развитие межкультурной компетенции студентов-лингвистов средствами
art -> Кодекс ткп 45 04-78-2007 (02250) установившейся практики
art -> Кодекс ткп 45 04-208-2010 (02250) установившейся практики
art -> Технический кодекс ткп 2006
art -> Сестринский процесс: пациент с нарушением целостности кожных покровов
art -> Технологии Raid – немного теории и практика использвания
art -> Диетическая добавка к пище
Briyan Grin -> Ткань космоса: Пространство, время и структура реальности


Поделитесь с Вашими друзьями:
1   ...   16   17   18   19   20   21   22   23   ...   34


База данных защищена авторским правом ©vossta.ru 2019
обратиться к администрации

    Главная страница