Ткань космоса: Пространство, время и структура реальности



страница23/34
Дата04.05.2018
Размер9.31 Mb.
1   ...   19   20   21   22   23   24   25   26   ...   34

Мы прошли долгий путь со времен Эмпедокла из Агригенто, объяснявшего вселенную с использованием земли, воздуха, огня и воды. И большая часть прогресса, которого мы достигли от Ньютона через революционные открытия двадцатого столетия, была впечатляюще подтверждена экспериментальной проверкой детальных и точных теоретических предсказаний. Но с середины 1980х мы стали жертвой своего собственного успеха. С непрекращающимся побуждением отодвинуть пределы понимания все дальше наши теории вошли в области вне достижимости нашей сегодняшней технологии.

Тем не менее, с использованием старания и удачи многие идеи переднего фронта будут проверены в течение нескольких следующих десятилетий. Как мы будем обсуждать в этой главе, планируемые или идущие полным ходом эксперименты имеют потенциал больше прояснить вопросы о существовании дополнительных измерений, составе темной материи и темной энергии, происхождении массы и Хиггсовом океане, аспектах космологии ранней вселенной, существенности суперсимметрии и, возможно, достоверности самой теории струн. Итак, со значительной долей удачи некоторые умозрительные и инновационные идеи относительно объединения, природы пространства и времени и нашего космического происхождения могут в конце концов быть проверены.


Эйнштейн в захвате

В десятилетних попытках сформулировать ОТО Эйнштейн черпал вдохновение из многих источников. Самыми важными из всех были достижения в математике искривленных поверхностей, разработанные в девятнадцатом веке математическими светилами, включая Карла Фридриха Гаусса, Яноша Больяи, Николая Лобачевского и Георга Бернхарда Римана. Как мы обсуждали в Главе 3, Эйнштейн также был вдохновлен идеями Эрнста Маха. Вспомним, что Мах защищал реляционистскую концепцию пространства: в соответствии с ней пространство обеспечивает язык для определения положения объекта относительно других, но само оно не является независимой сущностью. Сначала Эйнштейн был чемпионом энтузиазма относительно точки зрения Маха, поскольку она была самой относительной, насколько может быть теория, поддерживающая относительность. Но когда Эйнштейн понял ОТО глубже, он осознал, что она не может полностью включить в себя идеи Маха. В соответствии с ОТО вода в Ньютоновском ведре, вращающемся в пустой во всех других отношениях вселенной, будет принимать искривленную форму, и это противоречит чистой реляционистской точке зрения Маха, поскольку она подразумевает абсолютное понятие ускорения. Даже в этих условиях ОТО включила в себя некоторые аспекты точки зрения Маха, и в течение следующих нескольких лет обсуждаемый ниже эксперимент более чем на 500 миллионов долларов, который был в разработке около сорока лет, будет проверять одну из самых известных особенностей идей Маха.

Изучаемая физика была известна с 1918, когда австрийские исследователи Джозеф Ленц и Ханс Тирринг использовали ОТО, чтобы показать, что точно так же, как массивный объект деформирует пространство и время, – как шар для боулинга, покоящийся на батуте, – так вращающийся объект увлекает пространство (и время) вокруг себя, как вращающийся камень, погруженный в ведро сиропа. Этот эффект известен как системное увлечение (захват) и подразумевает, например, что астероид, свободно падающий в направлении быстро вращающейся нейтронной звезды или черной дыры будет пойман в воронку вращающегося пространства и будет закручиваться вокруг, когда он путешествует в направлении вниз. Эффект называется системным увлечением, поскольку с точки зрения астероида – из его системы отсчета – он совсем не будет никуда закручиваться. Напротив, он падает прямо вниз вдоль пространственной решетки, но поскольку пространство кружится (как на Рис. 14.1), решетка будет изгибаться, так что понятие "прямо вниз" будет отличаться от того, что вы ожидали, основываясь на удаленной, незакрученной системе отсчета.

c:\0\tkankosmosa_files\i101affc118

Рис 14.1 Массивный вращающийся объект увлекает пространство – свободно падающую систему – вокруг себя.
Чтобы увидеть связь с Махом, подумаем о версии системного увлечения, в которой массивный вращающийся объект есть огромная пустотелая сфера. Расчеты, инициированные в 1912 Эйнштейном (даже до завершения им ОТО), которые были существенно расширены в 1965 Дитером Бриллом и Джефри Коэном и окончательно завершены в 1985 немецкими физиками Пфистером и К. Брауном, показали, что пространство внутри полой сферы будет увлекаться вращательным движением и выстроится в воронкоподобный волчок.[1] Если стационарное ведро, наполненное водой, – стационарное с точки зрения удаленного положения – будет помещено внутрь вращающейся сферы, расчеты показывают, что вращающееся пространство окажет силовое воздействие на стационарную воду, заставляя ее подниматься по стенкам ведра и принимать искривленную форму.

Этот результат безмерно порадовал бы Маха. Хотя он не мог иметь подобное описание в терминах "вращающегося пространства", – поскольку эта фраза описывает пространство-время как нечто, – он нашел бы его экстремально удовлетворяющим тому, что относительное вращательное движение между сферой и ведром вызывает изменения в форме воды. Фактически, для капсулы, которая содержит достаточно массы (в количестве на одном уровне с массой, содержащейся во всей вселенной), расчеты показывают, что не имеет никакого значения, считаете ли вы, что полая сфера вращается вокруг ведра или ведро вращается внутри полой сферы. Точно так же, как Мах отстаивал, что имеет значение только относительное движение между ними двумя. А поскольку расчеты, на которые я сослался, не используют ничего, кроме ОТО, это является явным примером несомненных маховских свойств теории Эйнштейна. (Тем не менее, в то время как стандартная аргументация Маха требовала, чтобы вода оставалась плоской, если ведро вращалось в бесконечной, пустой вселенной, ОТО с этим не согласна. Результаты Пфистера и Брауна показали, что достаточно массивная вращающаяся сфера в состоянии полностью блокировать обычное воздействие пространства, которое лежит вне самой сферы).

В 1960 Леонард Шифф из Стэнфордского Университета и Джордж Пью из Департамента обороны США независимо предположили, что предсказание ОТО системного увлечения может быть экспериментально проверено с использованием вращательного движения Земли. Шифф и Пью обнаружили, что в соответствии с ньютоновской физикой вращающийся гироскоп – вращающееся колесо, которое прикреплено к оси, – плавающий по орбите высоко над земной поверхностью, должен быть ориентирован в фиксированном и неизменном направлении. Но в соответствии с ОТО его ось должна чрезвычайно слабо вращаться вследствие увлечения пространства Землей. Поскольку масса Земли незначительна по сравнению с гипотетической полой сферой, использованной в приведенных выше вычислениях Пфистера и Брауна, степень системного увлечения, вызванного вращением Земли, будет ничтожной. Детальные расчеты показали, что если ось волчка гироскопа сначала направлена на выбранную контрольную звезду, годом позже слабо кружащееся пространство сдвинет направление его оси примерно на стотысячную долю градуса. Это угол, на который сдвигается секундная стрелка часов грубо за две миллионных доли секунды, так что обнаружение его представляет большую научную, технологическую и инженерную проблему.

Сорока годами разработок и примерно сотней докторских диссертаций позже ко Стэнфорда, руководимая Фрэнсисом Эвериттом и финансируемая НАСА, была готова запустить эксперимент. В течение следующих нескольких лет их спутник (Gravity Probe B – Гравитационный зонд В), плавающий в пространстве на высоте 400 миль и снабженный четырьмя самыми стабильными из когда либо построенных гироскопов, будет пытаться измерить системное увлечение, вызванное земным вращением. Если эксперимент будет успешным, это будет одно из самых точных из когда-либо достигнутых подтверждений ОТО, и это обеспечит первое прямое доказательство эффекта Маха.[2] Не менее возбуждающей является возможность, что эксперимент обнаружит отклонения от предсказаний ОТО. Такая малая трещина в фундаменте ОТО может означать только, что мы нуждаемся в увеличении экспериментальных взглядов на до сих пор скрытые свойства пространства-времени.


Поимка волны

Существенным уроком ОТО является то, что масса и энергия вызывают деформацию ткани пространства; мы проиллюстрировали это на Рис. 3.10, показав искривленное окружение вокруг Солнца. Однако, имеется ограничение на такого рода рисунки, заключающееся в том, что они не годятся для иллюстрации, как пространственные деформации и искривления эволюционируют, когда масса и энергия двигаются или некоторым образом изменяют свою конфигурацию.[3] ОТО предсказывает, что точно так же, как батут предполагает фиксированную, искривленную форму, если вы стоите совершенно спокойно, но перемещается, когда вы прыгаете вверх и вниз, пространство предполагает фиксированную искривленную форму, если материя полностью спокойна, как предложено на Рис. 3.10, но, когда материя двигается взад и вперед, возникает волнистая рябь на его ткани. Эйнштейн пришел к этому результату между 1916 и 1918, когда он использовал вновь полученные уравнения ОТО, чтобы показать, что, – почти как электрические заряды, двигающиеся вверх и вниз в радиопередающей антенне, производят электромагнитные волны (это то, как производятся радио и телевизионные волны), – движение материи есть способ и причина (как взрыв сверхновой) для производства гравитационных волн. А поскольку гравитация есть кривизна, гравитационная волна есть волна кривизны. Точно так же, как бросание булыжника в пруд генерирует распространяющиеся наружу водяные волны, вращающаяся по спирали материя генерирует расходящуюся во все стороны пространственную рябь; в соответствии с ОТО взрывы удаленных сверхновых подобны космическим булыжникам, брошенным в пространственно-временной пруд, как показано на Рис. 14.2. Рисунок освещает важную отличительную особенность гравитационной волны: в отличие от электромагнитной волны, волны звука или водяной волны – волн, которые путешествуют по пространству, – гравитационные волны путешествуют внутри пространства. Они представляют собой путешествующие искажения в геометрии самого пространства.



c:\0\tkankosmosa_files\i114596a3a7

Рис 14.2 Гравитационные волны являются рябью в ткани пространства-времени.
Хотя гравитационные волны являются теперь общепринятым предсказанием ОТО, на многие годы этот предмет погряз в замешательстве и разногласиях, по меньшей мере, в части, следующей приверженности философии Маха. Если ОТО полностью включает в себя идеи Маха, тогда "геометрия пространства" будет просто общепринятым языком для выражения положения и движения одного массивного объекта по отношению к другим. Пустое пространство при таком образе мыслей будет пустым понятием, так как можно осмысленно говорить об искажении пустого пространства? Многие физики пытались доказать, что предложенные волны в пространстве означают ошибочное истолкование математики ОТО. Но при должном подходе теоретический анализ сводился к корректному заключению: гравитационные волны реальны и пространство может колебаться.

С каждым проходящим пиком и впадиной искаженная гравитационной волной геометрия будет растягивать пространство – и все в нем находящееся – в одном направлении, а затем сжимать пространство – и все в нем находящееся – в перпендикулярном направлении, как в чрезвычайно преувеличенном виде изображено на Рис. 14.3. В принципе, вы можете обнаружить прохождение гравитационной волны, периодически измеряя расстояния между различными положениями, и найти, что отношение между этими расстояниями каждое мгновение изменяется.

На практике никто не смог сделать этого, так что никто непосредственно не обнаружил гравитационную волну. (Однако, имеются убедительные косвенные доказательства для существования гравитационных волн[4]). Трудность в том, что возмущающее воздействие проходящей гравитационной волны обычно очень мало. Атомная бомба, взорванная на атолле Тринити 16 июля 1945, содержала энергию, эквивалентную 20 000 тонн тринитротолуола и была столь яркой, что свидетели, удаленные на мили, носили защиту для глаз, чтобы избежать серьезного повреждения зрения от сгенерированной ей электромагнитной волны.


c:\0\tkankosmosa_files\i0e0894ba74

Рис 14.3 Проходящая гравитационная волна растягивает объект сначала одним, а потом другим образом. (В этом представлении масштаб искажения типичной гравитационной волны чудовищно преувеличен).
Однако, даже если бы вы стояли прямо под стофутовой стальной башней, на которую была поднята бомба, гравитационные волны, произведенные ее взрывом, смогли бы растянуть ваше тело тем или иным образом только на ничтожную долю атомного диаметра. Настолько сравнительно слабы гравитационные возмущения, и это дает слабое представление о технологических проблемах, связанных с их обнаружением. (Поскольку гравитационные волны также могут мыслиться как гигантское число гравитонов, путешествующих скоординированным образом, – точно так же, как электромагнитная волна есть объединение гигантского количества скоординированных фотонов, – это также дает намек на то, насколько тяжело обнаружить отдельный гравитон).

Конечно, нам не особенно интересно детектировать гравитационные волны, произведенные ядерным оружием, но ситуация с астофизическими источниками не намного легче. Чем ближе и более массивен астрофизический источник и чем более энергичному и неистовому движению он подвержен, тем более сильные гравитационные волны мы можем получить. Но даже если звезда на расстоянии 10 000 световых лет становится сверхновой, результирующая гравитационная волна, достигающая Земли, будет растягивать метровой длины палку только на миллионную миллиардной доли сантиметра, лишь на сотни размеров атомных ядер. Так что, за исключением некоторого в высшей степени неожиданного астрофизического явления, в полном смысле слова с параметрами катаклизма, которое произойдет относительно близко, обнаружение гравитационных волн потребует аппаратуры, способной откликаться на фантастически малые изменения длины.

Ученые, которые спроектировали и построили Обсерваторию Гравитационных Волн на Лазерном Интерферометре (Laser Interferometer Gravitational Wave Observatory – LIGO) (запущенную совместно Калифорнийским Технологическим Институтом и Массачусетским Технологическим Институтом и финансируемую Национальным Фондом Науки), ответили на вызов. LIGO является впечатляющей установкой, а ожидаемая чувствительность поразительна. Она состоит из двух полых труб, каждая четырехкилометровой длины и чуть более метра ширины, которые расположены в виде гигантской буквы L. Лазерный свет, одновременно запущенный в вакуумный тоннель внутри каждой трубы и отраженный назад сильно отполированными зеркалами, используется для измерения относительной длины каждой трубы с фантастической точностью. Идея в том, что когда гравитационная волна проходит мимо, она будет растягивать одну трубу относительно другой, и если растяжение достаточно велико, ученые будут в состоянии обнаружить его.

Трубы длинные, поскольку растяжение и сжатие, совершаемое гравитационной волной, складывается по длине объекта. Если гравитационная волна растянула что-либо четырехметровой длины, скажем, на 10–20 метра, она растянет нечто четырехкилометровой длины на 10–17 метра. Так что, чем длиннее наблюдаемый размах, тем легче обнаружить изменения его длины. Чтобы извлечь выгоду из этого, экспериментаторы LIGO на самом деле направляют лазерные лучи отражаться туда и сюда между зеркалами на противоположных концах каждой трубы более чем сто раз за каждый пробег, повышая отслеживаемое расстояние в оба конца примерно до 800 километров на луч. С такими хитрыми уловками и инженерным мастерством LIGO должна быть в состоянии обнаружить любое изменение в длинах труб, которое меньше толщины человеческого волоса в триллион раз – в сто миллионов размеров атома.

Да, на самом деле имеются два таких L-образных прибора. Один в Ливингстоне, Луизиана, а другой примерно на расстоянии 2 000 миль в Хэнфорде, Вашингтон. Если гравитационная волна от некоторого удаленного астрофизического катаклизма докатится до Земли, она повлияет идентично на каждый детектор, так что любая волна, захваченная одним экспериментом, также хорошо проявится и в другом. Это важная проверка состоятельности, поскольку при всех предосторожностях, которые были предприняты, чтобы защитить детекторы, возмущения повседневной жизни (громыхание проходящего грузовика, скрежет пилы, толчок от падающего дерева и так далее) могут быть приняты за гравитационные волны. Требование соответствия между удаленными детекторами обеспечивает исключение таких ложных проявлений.

Исследователи также аккуратно рассчитали частоты гравитационных волн – число пиков и впадин, которые должны проходить через их детектор каждую секунду, – которые, как они ожидают, производятся широким спектром астрофизических явлений, включая взрывы сверхновых, вращательное движение несферических нейтронных звезд, столкновения между черными дырами. Без этой информации экспериментаторы искали бы иголку в стоге сена; с ней они могут сфокусировать детекторы на четко определенные области частот, представляющих физический интерес. Любопытно, что расчеты показывают, что некоторые частоты гравитационных волн должны быть в диапазоне нескольких тысяч циклов в секунду; если бы это были волны звука, они были бы прямо в области слышимости человеческого уха. Сливающиеся нейтронные звезды должны звучать подобно чириканью с быстро возрастающей высотой звука, тогда как пара сталкивающихся черных дыр будут подражать трели воробья, который получил резкий удар по клетке. Такова напоминающая джунгли какофония гравитационных волн, колеблющихся сквозь ткань пространства-времени, и если все пойдет по плану, LIGO будет первым инструментом для настройки на нее.[5]

Что делает все это столь возбуждающим, так это то, что гравитационные волны максимизируют выгоды от двух главных свойств гравитации: ее слабости и ее вездесущности. Среди всех четырех сил гравитация взаимодействует с материей наиболее слабо. Это приводит к тому, что гравитационные волны могут проходить через материал, который непроницаем для света, давая доступ к астрофизическим областям, ранее скрытым. Более того, поскольку все подвержено действию гравитации (в то время как, например, электромагнитные силы влияют только на объекты, несущие электрический заряд), все имеет способность генерировать гравитационные волны, а потому производить наблюдаемые характерные черты. Поэтому LIGO отмечает существенный поворотный пункт на нашем пути исследования космоса. Было время, когда все, что мы могли сделать, это поднять наши глаза и пристально вглядеться в небо. В семнадцатом столетии Ганс Липпершей и Галилео Галилей изменили это; с помощью телескопа великий вид космоса вошел в человеческий кругозор. Но со временем мы осознали, что видимый свет представляет узкую область электромагнитных волн. В двадцатом столетии с помощью телескопов на инфракрасном, радио, ренгеновском и гамма-излучении космос открылся нам заново, обнаружив чудеса, не видимые на длинах волн света, который воспринимают наши глаза. Теперь, в двадцать первом веке мы открываем небеса еще раз. С LIGO и следующими за ним усовершенствованиями* мы будем видеть космос совершенно новым способом. Вместо того, чтобы использовать электромагнитные волны, мы будем использовать гравитационные волны; вместо того, чтобы использовать электромагнитные силы, мы будем использовать гравитационные силы.
(*) "Одним из таких приборов является Пространственная Антенна на Лазерном Интерферометре (Laser Interferometer Spase Antenna – LISA), расположенная в пространстве версия LIGO, включающая в себя многочисленные космические корабли, разделенные миллионами километров, играющие роль четырехкилометровых труб LIGO. LIGO также будет работать сообща с VIRGO, французско-итальянским детектором гравитационных волн, расположенным за пределами города Пиза."
Чтобы оценить, насколько эта новая технология может быть революционной, представим мир, в котором неземные ученые только сейчас открыли, как обнаруживать электромагнитные волны – свет – и размышляют о том, насколько их взгляд на вселенную тотчас же основательно изменится. Мы находимся на грани нашего первого обнаружения гравитационных волн, так что вполне можем быть в сходной позиции. Тысячелетиями мы всматривались в космос; теперь, как будто впервые в человеческой истории, мы будем слушать его.
Охота за дополнительными размерностями

До 1996 большинство теоретических моделей, которые включали в себя дополнительные размерности, представляли, что их пространственная протяженность грубо соответствует планковской (10–33 сантиметра). Так как это на семнадцать порядков величины меньше, чем любое разрешение, которое можно получить, используя применяющееся в настоящее время оборудование, без открытия сверхъестественной новой технологии планковская физика будет оставаться вне экспериментальной досягаемости.

Но если дополнительные внешние размерности являются "большими", что означает больше, чем сотая миллиардной миллиардной (10–20) метра, примерно миллионная часть размера атомных ядер, тогда есть надежда.

Как мы обсуждали в Главе 13, если любое из дополнительных измерений "очень большое" – в пределах нескольких порядков от величины миллиметра – точность измерений силы гравитации должна обнаружить их существование. Такие эксперименты несколько лет идут на полном ходу и техника быстро усовершенствуется. До сих пор не было найдено отклонений от закона обратного квадрата, характеризующего три пространственных измерения, так что исследователи активно продолжили работу в направлении меньших расстояний. Положительный сигнал был бы, чтобы не сказать больше, потрясением оснований физики. Он обеспечил бы убедительное доказательство дополнительных размерностей, доступных только для гравитации, что дало бы сильную обстоятельную поддержку сценарию мира на бране в теории струн/М-теории.

Если дополнительные измерения большие, но не очень большие, маловероятно, что точность гравитационных экпериментов обнаружит их, но другие непрямые подходы остаются применимыми. Например, мы отмечали ранее, что большие дополнительные измерения будут подразумевать, что внутренняя сила гравитации больше, чем ранее думалось. Наблюдаемая слабость гравитации может быть атрибутом ее утечки в дополнительные измерения, а не ее фундаментальной слабости; на масштабах коротких расстояний, прежде чем такая утечка возникает, гравитация может быть сильной. Среди других проявлений это означает, что создание мельчайших черных дыр будет требовать намного меньшей массы и энергии, чем это нужно во вселенной, в которой гравитация в действительности намного слабее. В Главе 13 мы обсуждали возможность, что такие микроскопические черные дыры могут производится при высокоэнергетических протон-протонных столкновениях на Большом Адронном Коллайдере (LHC), ускорителе частиц, в настоящее время конструируемом в Женеве, Швейцария, и планируемом к готовности в 2007. Это захватывающая перспектива. Но имеется другая соблазнительная возможность, которая была озвучена Альфредом Шапере из Университета Кентукки и Джонатаном Фенгом из Университета Калифорнии в Ирвине. Эти исследователи заметили, что космические лучи – элементарные частицы, которые текут через пространство и постоянно бомбардируют нашу атмосферу, – могут также инициировать производство микроскопических черных дыр.

Частицы космических лучей были открыты в 1912 австрийским ученым Виктором Гессом; более чем девятью десятилетиями позже они все еще представляют много загадок. Каждую секунду космическое излучение вторгается в атмосферу и инициирует каскад миллиардов частиц, дождем падающих вниз, которые проходят сквозь ваше и мое тело; некоторые из них обнаруживаются различными специальными инструментами по всему миру. Но никто полностью не уверен, какие виды частиц составляют запечатленные космические лучи (хотя имеется растущий консенсус, что это протоны), и, несмотря на факт, что некоторые из этих высокоэнергетических частиц наверняка приходят от взрывов сверхновых, никто не имеет идеи, откуда происходит самое высокоэнергетическое космическое излучение. Например, 15 октября 1991 детектор космических лучей Летающий глаз (Fly's Eye) в пустыне Юта измерил след частицы через небо с энергией, эквивалентной 30 миллиардам масс протона. Это почти такая же большая энергия в отдельной субатомной частице, как в ударе по мячу бейсболиста Мариано Риверы, и примерно в 100 миллионов раз превышает энергии частиц, которые будут производиться в LHC.[6]Загадочная вещь, что не известно астрофизического процесса, который мог бы произвести частицы с такой высокой энергией; экспериментаторы собирают больше данных с помощью более чувствительных детекторов в надежде решить загадку.

Шапере и Фенга происхождение сверхэнергичных частиц космических лучей заботило во вторую очередь. Они осознали, что безотносительно к тому, откуда взялись такие частицы, если гравитация на микроскопическом масштабе намного сильнее, чем некогда считалось, самые высокоэнергетические частицы космических лучей могут иметь вполне достаточно энергии, чтобы создать мельчайшие черные дыры, когда эти частицы яростно вторгаются в верхнюю атмосферу.

Как и с их производством в атомных ускорителях, такие мельчайшие черные дыры не будут представлять абсолютно никакой опасности для экспериментаторов или мира в целом. После их создания они быстро распадутся, послав вовне каскад других, более обыкновенных частиц. Фактически, микроскопические черные дыры будут настолько короткоживущими, что экспериментаторы не смогут найти их непосредственно; напротив, они будут искать доказательство черных дыр через детальные исследования результирующих частиц, дождем падающих на их детекторы. Самый чувствительный из детекторов космических лучей мира, обсерватория Пьера Аугера, – вместе с наблюдающей областью размером порядка Род Айленда, – строится в настоящее время в обширной вытянутой местности в западной Аргентине. Шапере и Фенг оценивают, что если все внешние размерности имеют величину порядка 10–14 метра, тогда после года сбора данных детектор Аугера увидит характеристические обломки частиц от примерно дюжины мельчайших черных дыр, произведенных в верхней атмосфере. Если такие отметки черных дыр не будут найдены, эксперимент даст заключение, что внешние размерности еще меньше. Поиск остатков черных дыр, произведенных столкновениями космических лучей, определенно является рискованной ставкой, но успех открыл бы первое экспериментальное окно к дополнительным размерностям, черным дырам, теории струн и квантовой гравитации.

Вне производства черных дыр имеется другой, основанный на ускорителях путь, на котором исследователи могут искать внешние размерности в течение следующих десяти лет. Идея заключается в усложненном варианте трактовки "пространства-между-диванными-подушками" для потерянной монеты, выпавшей из вашего кармана.

Центральный принцип физики есть сохранение энергии. Энергия может проявлять себя в различных формах – кинетическая энергия движения мяча, когда он улетает от бейсбольной биты, гравитационная потенциальная энергия, когда мяч взлетел вверх, энергия звука и тепла, когда мяч падает на грунт и возбуждает все виды колебательного движения, энергия массы, которая замкнута внутри самого мяча, и так далее, – но когда все носители энергии оценены, количество, с которым вы закончите всегда равно количеству, с которым вы начали.[7] На сегодняшний день нет эксперимента, нарушающего этот закон совершенного энергетического баланса.

Но в зависимости от точного размера гипотетических внешних измерений эксперименты с высокими энергиями, которые будут проводиться с вновь усовершенствованным оборудованием в Фермилабе и на Большом Адронном Коллайдере (LHC) могут обнаружить процессы, которые покажут нарушение сохранения энергии: энергия в конце столкновения может быть меньше, чем энергия в начале. Причина в том, что, почти похоже на потерянные монетки, энергия (уносимая гравитонами) может просачиваться в трещину – мельчайшее дополнительное пространство, – обеспеченную дополнительными измерениями и потому нечаянно упущенную при вычислениях оцениваемой энергии. Возможность такого "сигнала потери энергии" обеспечивает еще один способ для установления, что ткань космоса намного сложнее, чем мы можем видеть непосредственно.

Несомненно, когда речь заходит о дополнительных размерностях, я предубежден. Я работал над аспектами дополнительных размерностей более пятнадцати лет, так что они занимают особое место в моем сердце. Но, с этой верой, как описателю, мне тяжело представить открытие, которое было бы более завораживающим, чем находка доказательства измерений за пределами трех, к которым мы все привыкли. По моему мнению, в настоящее время нет другого серьезного предположения, чье подтверждение так основательно потрясет основы физики и так полно установит, что мы должны быть готовы к вопросам, относящимся к кажущимся самоочевидными элементам реальности.


Хиггс, суперсимметрия и теория струн

Помимо научных попыток поиска неизвестного и шансов нахождения доказательства дополнительных размерностей, имеется пара специфических мотивов для недавнего обновления ускорителя в Фермилабе и для строительства мамонта – Большого Адронного Коллайдера. Один заключается в поиске частиц Хиггса. Как мы обсуждали в Главе 9, неуловимые частицы Хиггса должны быть мельчайшими составляющими поля Хиггса – поля, которое по предположениям физиков формирует Хиггсов океан и через это придает массу другим фундаментальным семействам частиц. Сегодняшние теоретические и экспериментальные изыскания предполагают, что Хиггс должен иметь массу в диапазоне от ста до тысячи масс протона. Если нижний предел этого диапазона окажется правильным, то Фермилаб имеет достаточно хорошие шансы открытия частицы Хиггса в ближайшем будущем. И определенно, если Фермилаб потерпит неудачу и если оценка диапазона масс, тем не менее, точна, Большой Адронный Коллайдер должен произвести частицы Хиггса в изобилии к концу десятилетия. Обнаружение частиц Хиггса будет важнейшей вехой, так как оно подтвердит существование семейств полей, которые теоретическая практика физиков и космологов вызвала к жизни десятилетия назад без какого-либо экспериментального доказательства.

Другая главная цель как Фермилаба, так и Большого Адронного Коллайдера заключается в обнаружении доказательства суперсимметрии. Повторим из Главы 12, что суперсимметричные пары частиц, чьи спины отличаются на половинку единицы, являются идеей, которая исходно появилась из исследований теории струн в начале 1970х. Если супперсимметрия имеет место в реальном мире, то для каждого из известных видов частиц со спином-1/2 должны существовать виды-партнеры со спином-0; для каждого из известных видов частиц со спином-1 должны существовать виды-партнеры со спином-1/2. Например, для электрона со спином-1/2 должна существовать частица со спином-0, называемая суперсимметричным электроном или, для краткости, сэлектроном; для кварков со спином-1/2 должны существовать суперсимметричные кварки со спином-0 или скварки; для нейтрино со спином-1/2 должны существовать снейтрино со спином-0; для глюонов, фотонов и W- и Z-частиц со спином-1 должны существовать глюино, фотино и вино и зино со спином-1/2. (Да, физики вошли в раж).

Никто никогда не детектировал любой из этих обозначенных двойников, а объяснение в том (физики надеются, скрестив пальцы), что суперсимметричные частицы тяжелее, чем их известные дубликаты. Теоретические рассмотрения наводят на мысль, что суперсимметричные частицы должны быть в тысячи раз тяжелее протона, и в этом случае их отсутствие в экспериментальных данных не должно быть удивительным: существующие атомные ускорители не имеют адекватной мощи, чтобы произвести их. В пришедшем десятилетии это изменится. Уже заново обновленный ускоритель в Фермилабе имеет шанс открыть некоторые суперсимметричные частицы. И, как и с Хиггсом, если Фермилаб не сможет найти доказательств суперсимметрии и если ожидаемый диапазон масс суперсимметричных частиц достаточно корректен, Большой Адронный Коллайдер должен произвести их с легкостью.

Подтверждение суперсимметрии будет самым важным достижением в физике элементарных частиц более чем за два десятилетия. Оно установит следующий этап в нашем понимании физики частиц за пределами успешной стандартной модели и обеспечит обстоятельное доказательство того, что теория струн следует правильному пути. Но заметим, что это не подтвердит саму теорию струн. Даже если суперсимметрия была открыта в ходе разработки теории струн, физики с тех пор давно осознают, что суперсимметрия более общий принцип, который может быть легко включен в традиционные подходы с точечными частицами. Подтверждение суперсимметрии должно установить необходимый элемент струнной схемы и должно задать следующие исследования, но оно не является "дымящимся пистолетом" теории струн.

С другой стороны, если сценарий мира на бране корректен, грядущие эксперименты на ускорителях имеют потенциал подтверждения теории струн. Как отмечалось коротко в Главе 13, если внешние измерения в сценарии мира на бране окажутся больше 10–16 сантиметра, то не только гравитация должна быть внутренне сильнее, чем мы ранее думали, но струны также должны быть существенно больше. Поскольку более длинные струны менее жесткие, они требуют меньше энергии, чтобы колебаться. В то время как в общепринятой струнной схеме колебательные моды струны должны иметь энергии, которые более чем в миллион миллиардов раз выходят за пределы досягаемости наших экспериментов, в сценарии мира на бране энергии колебательных мод струны могут быть также малы, как тысячи протонных масс. При таком раскладе высокоэнергетические столкновения в Большом Адронном Коллайдере будут близки к хорошо посланному мячу для гольфа, который рикошетирует внутри пианино; столкновения будут иметь достаточно энергии, чтобы возбудить многие "октавы" колебательных мод струны. Эксперименты будут обнаруживать богатство новых, никогда ранее не виданных частиц, – что означает, новых, никогда ранее не виданных колебательных мод струны, – чьи энергии будут соответствовать гармоническим резонансам струнной теории.

Свойства этих частиц и взаимосвязи между ними будут безошибочно показывать, что все они являются частью одной и той же космической партитуры, что все они суть различные, но связанные ноты, что все они являются особыми колебательными модами одного вида объектов – струн. В обозримом будущем это наиболее вероятный сценарий для прямого подтверждения теории струн.
Космические истоки

Как мы говорили в предыдущих главах, космическое микроволновое фоновое излучение играет доминирующую роль в космологических исследованиях с момента его открытия в середине 1960х. Причина ясна: на ранних этапах вселенной пространство было заполнено смесью электрически заряженных частиц – электронов и протонов, – которые с помощью электромагнитного взаимодействия непрерывно испускали и поглощали фотоны сюда и туда. Но всего через 300 000 лет после Взрыва вселенная охладилась достаточно, чтобы электроны и протоны соединились в электрически нейтральные атомы, – и дальше с этого момента радиация путешествует сквозь пространство большей частью беспрепятственно, обеспечив четкую мгновенную фотографию ранней вселенной. Имеется грубо 400 миллионов этих первичных фотонов космического микроволнового излучения, нетронутых реликтов ранней вселенной, рассеянных в каждом кубическом метре пространства.

Начальные измерения микроволновой фоновой радиации определили, что ее температура в высшей степени однородна, но, как мы обсуждали в Главе 11, более пристальная проверка, впервые выполненная в 1992 Зондом Космического Фона (Cosmic Background Explorer – COBE) и с тех пор усовершенствованная большим числом наблюдений, нашла доказательство малых температурных вариаций, как показано на Рис 14.4а. Данные отмечены серым со светлыми и темными пятнами, показывающими температурные вариации примерно в несколько десятитысячных градуса. Неровности рисунка показывают мелкие, но неопровержимо реальные неровности температуры радиации по небу.

Хотя это впечатляющее открытие само по себе, эксперимент COBE также обозначил фундаментальное изменение в характере космологических исследований. До COBE космологические данные были грубыми. Напротив, космологическая теория считалась жизнеспособной, если она могла соответствовать приблизительным особенностям астрономических наблюдений. Теоретики могли предлагать схему за схемой лишь с минимальным анализом соответствия наблюдательным ограничениям. Тогда просто не было достаточного количества наблюдательных ограничений, а те, которые существовали, не были особенно точными. Но COBE инициировал новую эру, в которой стандарты ощутимо ужесточились. Теперь имеется растущий ком точных данных, с которыми теория должна успешно справляться, даже чтобы быть просто рассмотренной. В 2001 был запущен спутниковый Зонд Микроволновой Анизотропии имени Вилкинсона (Wilkinson Microwave Anisotropy Probe – WMAP), совместный венчурный проект НАСА и Принстонского Университета, чтобы измерять микроволновое фоновое излучение с примерно в сорок раз большим разрешением и чувствительностью, чем у COBE.


c:\0\tkankosmosa_files\if8da2363ea 

(а) (b)


Рис 14.4 (а) Данные по космической микроволновой фоновой радиации, собранные спутником COBE. Радиация свободно путешествовала сквозь пространство с момента примерно 300 000 лет после Большого взрыва, так что эта картина представляет мельчайшие температурные вариации, существовавшие во вселенной около 14 миллиардов лет назад. (b) Усовершенствованные данные, собранные спутником WMAP.
Сравнивая начальные результаты WMAP, Рис. 14.4b, с результатами COBE, Рис.14.4а, вы можете немедленно увидеть, насколько более точную и более детальную картину смог обеспечить WMAP. Другой спутник, Планк (Plank), который разрабатывается Европейским Космическим Агентством, планируется к запуску в 2007 и, если все пойдет по плану, будет лучше WMAP по разрешению во много раз.

Наплыв точных данных просеивал поле космологических предположений, среди которых инфляционная модель является, несомненно, ведущим игроком. Но, как мы отмечали в Главе 10, инфляционная космология не однозначная теория. Теоретики предложили много различных вариаций (стоит просто перечислить несколько: старая инфляция, новая инфляция, теплая инфляция, гибридная инфляция, гиперинфляция, вспомогательная инфляция, вечная инфляция, расширенная инфляция, хаотическая инфляция, двойная инфляция, маломасштабная инфляция, гипернатуральная инфляция), каждая из которых содержит признак короткого взрыва и быстрого расширения, но все отличаются в деталях (в числе полей и форме их потенциальной энергии, в том, какие поля усаживаются на энергетическое плато, и так далее). Эти различия выдают слабо отличающиеся предсказания для свойств микроволновой фоновой радиации (разные поля с разными энергиями имеют слабо различающиеся квантовые флуктуации). Сравнение с данными WMAP и Plank должно быть способным отсеять многие предложения, существенно уточнив наше понимание.

Фактически, данные могут сузить поле предположений еще дальше. Хотя квантовые флуктуации, растянутые инфляционным расширением, обеспечивают убедительное объяснение наблюдаемым вариациям температуры, эта модель имеет соперника. Циклическая космологическая модель Стейнхардта и Турока, описанная в Главе 13, предлагает альтернативный взгляд. Когда две 3-браны циклической модели медленно направляются друг к другу, квантовые флуктуации будут подвергать воздействию различные части бран в слабо различающихся степенях. Когда браны в конце концов сталкиваются, грубо триллионом лет позже, различные области на бранах будут контактировать в слабо отличающиеся моменты, до некоторой степени как два куска шершавой наждачной бумаги, схлопнувшиеся друг с другом. Мельчайшие отклонения от совершенно однородного столкновения дадут мельчайшие отклонения от совершенно однородной эволюции на каждой бране. Поскольку одна из этих бран предполагается нашим трехмерным пространством, отклонения от однородности являются отклонениями, которые мы должны быть в состоянии обнаружить. Стейнхардт, Турок и их соратники доказывали, что неоднородности генерируют отклонения температуры такой же формы, как это появляется из инфляционной схемы, а потому с сегодняшними данными циклическая модель предлагает эквивалентно жизнеспособное объяснение наблюдениям.

Однако, более уточненные данные, которые будут собраны в течение следующих десяти лет, могут найти различие между двумя подходами. В инфляционной схеме не только квантовые флуктуации поля инфлатона растягиваются взрывом экспоненциального расширения, но и мельчайшая квантовая рябь в пространственной ткани также генерируется при интенсивном внешнем растягивании. Поскольку рябь в пространстве является ничем иным, как гравитационными волнами (как в нашей недавней дискуссии про LIGO), инфляционная схема предсказывает, что гравитационные волны производились в ранние моменты вселенной.[8] Их часто называют изначальные гравитационные волны, чтобы отличить их от волн, которые генерируются более недавними интенсивными астрофизическими событиями. В циклической модели, в отличие от этого, отклонения от совершенной однородности строятся медленно, в течение почти непостижимого промежутка времени, пока браны тратят триллион лет, медленно направляясь к их следующему шлепку. Отсутствие резких и энергичных изменений в геометрии бран и в геометрии пространства означает, что пространственная рябь не генерируется, так что циклическая модель предсказывает отсутствие изначальных гравитационных волн. Таким образом, если изначальные гравитационные волны удастся обнаружить, это будет еще одним триумфом инфляционной схемы и определенно исключит циклический подход.

Маловероятно, что LIGO будет достаточно чувствительным, чтобы обнаружить предсказанные инфляцией гравитационные волны, но возможно, что они будут наблюдаться косвенно или с помощью Plank, или с помощью другого спутникового эксперимента, названного экспериментом по Поляризации Космического Микроволнового Фона (Cosmic Microwave Background Polarization – CMBPol), который сейчас планируется. Plank и CMBPol, в особенности, не будут сфокусированы исключительно на температурных вариациях микроволнового фонового излучения, но также будут измерять поляризацию, направления среднего спина обнаруженных микроволновых фотонов. Через цепочку аргументов, слишком запутанных, чтобы их раскрывать здесь, это приводит к тому, что гравитационные волны от Взрыва должны оставить особый отпечаток на поляризации микроволнового фонового излучения, возможно отпечаток достаточно большой, чтобы быть измеренным.

Так что в течение десятилетия мы можем быстро получить ответ на вопрос, был ли Взрыв на самом деле шлепком, и является ли вселенная, о которой мы осведомлены, на самом деле 3-браной. В золотую эру космологии некоторые из самых диких идей могут быть на самом деле проверяемы.


Темная материя, темная энергия и будущее вселенной

В Главе 10 мы ознакомились со строгим теоретическим и экспериментальным доказательством, установившим, что не более чем 5 процентов массы вселенной происходит от составляющих, найденных в привычной материи, – протонов и нейтронов (электроны оцениваются менее, чем в 0,05 процента от массы обычной материи), – тогда как 25 процентов происходит от темной материи и 70 процентов от темной энергии. Но здесь все еще есть существенная неопределенность относительно идентификации всей этой темной мешанины. Естественная гипотеза заключается в том, что темная материя также составлена протонами и нейтронами, теми, которые как-то избежали совместного слипания в форме эмитирующих свет звезд. Но другие теоретические рассмотрения делают эту гипотезу очень маловероятной. Через детальные наблюдения астрономы имеют ясное знание о среднем относительном распространении легких элементов – водорода, гелия, дейтерия и лития, – которые рассеяны по всему космосу. До высокой степени точности соответствие их распространения теоретическим расчетам процессов приводит к уверенности, что эти ядра были синтезированы в течение первых нескольких минут вселенной. Это согласие является одним из величайших успехов современной теоретической космологии. Однако, эти расчеты предполагают, что объем темной материи не составлен из протонов и нейтронов; если на космологических масштабах протоны и нейтроны были бы доминирующими составляющими, существующий космический рецепт был бы отброшен и расчеты выдали бы результаты, которые исключаются наблюдениями.

Итак, если не протоны и нейтроны, то что составляет темную материю?

До сегодняшнего дня никто не знает, но нет недостатка в предположениях. Имена кандидатов пробегают диапазон от аксионов до зино, и любой, нашедший ответ, несомненно, будет оплачивать визит в Стокгольм. То, что никто еще не обнаружил частиц темной материи, устанавливает существенные ограничения на любое предположение. Причина в том, что темная материя не только расположена в удаленном пространстве; она распределена по всей вселенной, так что должна также доносится до нас здесь, на Земле. В соответствии со многими предположениями прямо сейчас миллиарды частиц темной материи простреливают ваше тело каждую секунду, так что жизнеспособными кандидатами являются только такие частицы, которые могли бы проникать через объемную материю не оставляя существенных следов.

Нейтрино являются одной из возможностей. Расчеты оценивают их реликтовое распространение со времен их производства в Большом взрыве в примерно 55 миллионов на кубический метр пространства, так что, если окажется, что один из трех видов нейтрино весит около одной сотой от миллионной (10–8) доли массы протона, они смогут заместить темную материю. Хотя недавние эксперименты дали сторогое доказательство, что нейтрино имеют массу, в соответствии с сегодняшними данными они слишком легкие, чтобы выполнить роль темной материи; они не дотягивают до нужной отметки на фактор более чем сто.

Другое перспективное предложение привлекает суперсимметричные частицы, особенно фотино, зино и хиггсино (партнеров фотона, Z-частицы и Хиггса). Это наиболее сдержанные суперсимметричные частицы, – они могут невежливо проходить через всю Землю без малейшего влияния на их движение, – а потому могут легко избежать детектирования.[9] Из расчетов, как много таких частиц могло бы быть произведено в Большом взрыве и сохраниться до сегодняшнего дня, физики оценивают, что они должны иметь массу порядка от 100 до 1 000 масс протона, чтобы заместить темную материю. Это интригующее число, поскольку различные изыскания моделей суперсимметричных частиц, точно так же, как теории суперструн, приходят к тому же диапазону масс для этих частиц без какой-либо связи с темной материей и космологией. Это должно быть загадочное и полностью необъяснимое совпадение, если, конечно, темная материя на самом деле состоит из суперсимметричных частиц. Так что поиски суперсимметричных частиц на сегодняшних и приходящих к ним на смену ускорителях могут также выглядеть как поиски самых вероятных кандидатов на темную материю.

Более прямые поиски частиц темной материи, текущих сквозь Землю, также будут на полном ходу через некоторое время, хотя это экстремально трудные эксперименты. Из миллиона или около того частиц темной материи, которые должны проходить через область размером с квартал города каждую секунду, не более одной частицы в день должно оставить какое-либо доказательство в специально разработанном оборудовании, которое многие экспериментаторы выстроили, чтобы обнаружить их. На сегодняшний день подтвержденных обнаружений частиц темной материи не достигнуто.[10] Поскольку приз все еще очень высоко в воздухе, исследователи продвигаются вперед со все большей интенсивностью. Имеется некоторая возможность, что в течение нескольких следующих лет задача идентификации темной материи будет решена.

Окончательное подтверждение, что темная материя существует, и прямое определение ее состава будет большим достижением. Впервые в истории мы сможем узнать нечто, что является одновременно полностью фундаментальным и необычайно неуловимым: строение значительной части материального содержимого вселенной.

Тем не менее, как мы говорили в Главе 10, недавние данные строго указывают, что даже при идентификации темной материи все еще имеется существенный кусок требуемых ухищрений в объяснении эксперимента: наблюдения сверхновых, которые дают доказательство расталкивающей космологической константы, составляющей до 70 процентов полной энергии во вселенной. Как самое захватывающее и неожиданное открытие последнего десятилетия, доказательство космологической константы – энергии, которая наполняет пространство, – требует убедительного завершающего подтверждения. Большое число подходов планируется или уже осуществляется.

Эксперименты по микроволновому фону и здесь играют важную роль. Размер пятен на Рис. 14.4 – где, еще раз, каждое пятно есть область однородной температуры, – освещает общую форму пространственной ткани. Если пространство имеет форму вроде сферы, как на Рис 8.6а, раздувание вовне будет приводить к тому, что пятна будут несколько больше, чем они есть на Рис.14.4b; если пространство имеет форму вроде седла, как на Рис.8.6с, сжатие вовнутрь будет приводит пятна к небольшому уменьшению; и если пространство плоское, как на Рис. 8.6b, размер пятен будет промежуточным. Точные измерения, начатые COBE и с тех пор улучшенные WMAP, жестко подтверждают предположение, что пространство плоское. Эта вещь не только является теоретическим ожиданием, следующим из инфляционных моделей, но оно также абсолютно согласуется с результатами исследования сверхновых. Как мы видели, пространственно плоская вселенная требует полной плотности массы/энергии, равной критической плотности. С обычной и темной материей, дающими вклад около 30 процентов, и темной энергией, дающей вклад около 70 процентов, все впечатляюще сходится вместе.

Более прямое подтверждение результатов по сверхновым является целью Зонда Сверхновых/Ускорения (SuperNova/Acceleration Probe – SNAP). Предложенный учеными из Лоуренсовской Лаборатории в Беркли, SNAP должен быть спутниковым орбитальным телескопом со способностью измерять в двадцать раз больше сверхновых, изучаемых путем наблюдений с земной поверхности. SNAP не только должен быть в состоянии подтвердить более ранние результаты, что 70 процентов вселенной есть темная энергия, но он также должен более точно определить природу темной энергии.

Обратите внимание, хотя я описывал темную энергию как версию эйнштейновской космологической постоянной, – постоянной, неизменной энергии, которая подталкивает пространство к расширению, – имеется и тесно связанная альтернативная возможность. Вспомним из нашего обсуждения инфляционной космологии (и прыгающей лягушки), что поле, чья величина возвышается над его низшей энергетической конфигурацией, может вести себя подобно космологической константе, двигая ускоренное расширение пространства, но оно будет действовать только короткое время. Рано или поздно поле займет свое место на дне своей чаши потенциальной энергии, и давление наружу исчезнет. В инфляционной космологии это происходит за мельчайшую долю секунды. Но путем введения нового поля и аккуратного выбора формы его потенциальной энергии физики нашли способ для ускоренного расширения, который будет намного более мягким в своем расталкивающем давлении, но намного более долгим, – для поля, которое должно двигать сравнительно слабо и равномерно ускоряющуюся фазу пространственного расширения, которое длится не долю секунды, а миллиарды лет, пока поле медленно скатывается к величине минимальной энергии. Это открывает возможность, что прямо сейчас мы можем воспринимать экстремально мягкую версию инфляционного взрыва, который, как мы уверены, происходил на протяжении ранних моментов вселенной.

Разница между "обычной" космологической константой и последней возможностью, известной как квинтэссенция, имеет минимальное значение сегодня, но влечет чрезвычайные последствия в удаленном будущем вселенной. Космологическая константа есть константа – она обеспечивает бесконечное ускоренное расширение, так что вселенная будет расширяться все более быстро и становится все более разреженной, разбавленной и пустой. Но квинтэссенция обеспечивает ускоренное расширение, которое в некоторой точке сойдет на нет, подразумевая удаленное будущее менее суровым и пустынным, чем это следует из ускоренного расширения, которое вечно. Через измерения изменений в ускорении пространства за большие промежутки времени (через наблюдение сверхновых на различных расстояниях, а потому в различные моменты времени в прошлом), SNAP может быть в состоянии сделать выбор между двумя возможностями. Через определение, является ли темная энергия по-настоящему космологической константой, SNAP даст возможность проникнуть в удаленную судьбу вселенной.
Пространство, время и теория

Путешествие к открытию природы пространства и времени было долгим и наполненным многими сюрпризами; нет сомнений, оно все еще находится в своей ранней стадии. Последние несколько веков мы видели, как прорывы один за другим радикально переворачивают наши концепции пространства и времени, и снова их изменяют. Теоретические и экспериментальные предложения, которые мы осветили в этой книге, представляют лепку этих идей нашим поколением, и, вероятно, будут составлять большую часть нашего научного наследия. В Главе 16 мы будем обсуждать некоторые из наиболее свежих и умозрительных достижений в попытке бросить свет на то, какими могут быть следующие этапы путешествия. Но сначала, в Главе 15, мы порассуждаем в другом направлении.

Хотя это не является шаблонной комбинацией для научного открытия, история показывает, что глубокое понимание часто является первым шагом в направлении технологического контроля. Понимание электромагнитной силы в 1800е в конце концов привело к телеграфу, радио и телевидению. С этим знанием, в соединении с последующим пониманием квантовой механики, мы смогли разработать компьютеры, лазеры и электронные приспособления, слишком многочисленные, чтобы упоминать их. Понимание ядерных сил привело к опасному созданию самого мощного оружия, которое когда либо знал мир, и к разработке технологий, которые однажды смогут удовлетворить все энергетические потребности мира с помощью всего лишь бочки соленой воды. Смогут ли наши все углубляющиеся представления о пространстве и времени быть первым шагом к аналогичным примерам открытий и технологических разработок? Будем ли мы однажды хозяевами пространства и времени и будем ли мы делать вещи, которые сейчас являются только частью научной фантастики?

Никто не знает. Но посмотрим, как далеко мы можем зайти и что за этим может последовать.

15 Телепортаторы и машины времени

ПУТЕШЕСТВИЕ СКВОЗЬ ПРОСТРАНСТВО И ВРЕМЯ


Каталог: art -> theory -> Briyan Grin
art -> Вилена александровна развитие межкультурной компетенции студентов-лингвистов средствами
art -> Кодекс ткп 45 04-78-2007 (02250) установившейся практики
art -> Кодекс ткп 45 04-208-2010 (02250) установившейся практики
art -> Технический кодекс ткп 2006
art -> Сестринский процесс: пациент с нарушением целостности кожных покровов
art -> Технологии Raid – немного теории и практика использвания
art -> Диетическая добавка к пище
Briyan Grin -> Ткань космоса: Пространство, время и структура реальности


Поделитесь с Вашими друзьями:
1   ...   19   20   21   22   23   24   25   26   ...   34


База данных защищена авторским правом ©vossta.ru 2019
обратиться к администрации

    Главная страница