В книге много интересных и остроумных историй об открытиях и феноменах, гипотезах и перспективах науки психобиохимии!



страница29/43
Дата09.05.2018
Размер4.16 Mb.
ТипРеферат
1   ...   25   26   27   28   29   30   31   32   ...   43

СПИННО-МОЗГОВЫЕ НЕРВЫ

Спинно-мозговые нервы в нескольких отношениях сильно отличаются от черепно-мозговых нервов. Во-первых, своим более регулярным расположением. Черепные нервы соединены с головным мозгом неравномерно, большей частью в том месте, где мост соединяется с продолговатым мозгом. Напротив, спинно-мозговые нервы выходят из спинного мозга через равномерные промежутки, что имеет определенный смысл, если мы вспомним естественную историю хордовых животных. Хордовые - это один из типов животных, тела которых сегментированы. Сегментация - это разделение структур тела па похожие отделы, подобно тому, как поезд делится на вагоны. (К другим типам сегментированных животных относятся членистоногие, включая насекомых, паукообразных, многоножек и ракообразных; а также кольчатые черви).

Хордовые в своем развитии достигли такой стадии, когда сегментация перестала быть отчетливо выраженной. Явным признаком сегментации у человека является ряд повторяющихся позвонков (по одному на каждый сегмент) позвоночного столба и ребра, которые присоединены к двенадцати позвонкам. Нервная система также несет на себе отпечаток сегментации, так как спинно-мозговые нервы выходят из спинного мозга через повторяющиеся промежутки сквозь межпозвоночные отверстия на всем протяжении позвоночника.

Черепно-мозговые нервы, как мы с вами убедились, являются либо двигательными, либо чувствительными, либо смешанными, а спинно-мозговые нервы - все смешанные. В каждом сегменте спинного мозга берет начало одна пара нервов. Один нерв пары выходит из правой половины спинного мозга, второй - из левой. Нервные волокна берут начало в сером веществе спинного мозга. Более того, каждый нерв соединен как с передним, так и с. задним рогом серого вещества. Таким образом, у каждого нерва есть передний корешок и задний корешок. В передний корешок из спинного входят двигательные волокна, и из заднего корешка в спинной мозг входят чувствительные волокна. Тела клеток двигательных волокон находятся в спинио мозге, в его сером веществе. В противоположное этому тела клеток чувствительных волокон располагаются вне спинного мозга. Тела чувствительны: волокон называются ганглиями заднего корешка.

Каждая пара спинно-мозговых нервов формируется из слияния переднего и заднего корешков на каждой стороне спинного мозга. Первая пар; покидает позвоночный канал в промежутке между черепом и первым позвонком, вторая пара - между первым и вторым позвонком и так далее. Первые семь позвонков позвоночного столба со ставляют шейный отдел позвоночника и называются поэтому шейными позвонками. Соответственно, первые восемь пар спинно-мозговых нервов, первая из которых проходит над первым шейным позвонком, а восьмая - под седьмым, называются шейными нервами.

Ниже шейных позвонков находятся двенадцать грудных позвонков, и из-под каждого из них выходит очередная пара спинно-мозговых нервов, которые, естественно, образуют грудные спинно-мозговые нервы (межреберные нервы). Поскольку ниже грудных позвонков расположены поясничные позвонки (их пять), постольку им соответствуют пять пар поясничных нервов. Под поясничными позвонками расположен крестец. У взрослого он кажется одной костью, хотя у плода он состоит из отдельных позвонков. В послеродовом периоде крестцовые позвонки постепенно срастаются для образования более прочного основания для нашего опорно-двигателыюго аппарата. Однако надо заметить, что образование нервов опередило такое развитие событий, и из крестца выходит еще пять пар крестцовых нервов. И наконец, в самом нижнем конце позвоночника расположены еще четыре похожих на пуговицы позвонка, которые вместе образуют копчик. Из этого отдела выходит одна пара спинно-мозговых нервов, которые здесь называются копчиковыми.

Итого, в сумме получаем 8 шейных нервов, 12 грудных (межреберных) нервов, 5 поясничных нервов, 5 крестцовых и 1 копчиковый, что и дает всего 31 пару спинно-мозговых нервов.

Если бы позвоночный столб и спинной мозг имели одинаковую длину, то можно было бы ожидать, что сегменты спинного мозга идут вровень с позвонками, и каждый следующий нерв выходит из позвоночника горизонтально. Но это не так, позвоночный столб приблизительно на десять дюймов длиннее, чем спинной мозг. Следовательно, сегменты спинного мозга имеют меньшую высоту, чем позвонки.

При продвижении по ходу спинного мозга сверху вниз каждая пара нервов должна проделывать все более длинный отвесный путь, чтобы выйти из позвоночного канала из-под «своего» позвонка. Чем дальше вниз, тем длиннее становится этот вертикальный отрезок пути. Под концом спинного мозга в позвоночном канале находится конгломерат из десяти (вначале) пар нервов, которые идут вниз по каналу, и у каждого следующего межпозвоночного отверстия они одна за другой выходят из позвоночника. Таким образом, вся нижняя часть позвоночного канала заполнена грубыми, параллельно расположенными нитями, которые в совокупности напоминают по виду конский хвост. Это образование, согласно анатомической номенклатуре, так и называется - cauda equina (конский хвост, лат.). Если для проведения хирургической операции надо обезболить нижнюю часть тела, то анестетик (обезболивающее вещество) вводят именно в область конского хвоста, но не выше, чтобы не повредить вещество спинного мозга. По месту пункции канала позвоночника эта анестезия так и называется - каудальной, то есть хвостовой.

После того как нерв покидает просвет спинномозгового канала, он сразу делится на две ветви - дорзальную, которая направляется к мышцам и органам спины, и вентральную, которая направляется к остальным частям тела.

Вообще говоря, согласно общему плану строения тела хордовых животных, нервы каждого сегмента снабжают органы в пределах одного, своего, сегмента. Даже у человека нервы первых четырех шейных сегментов снабжают окончаниями кожу и мышцы шеи, а нервы следующих четырех шейных сегментов снабжают кожу и мышцы верхней конечности. То же самое касается нервов поясничной области, которые снабжают окончаниями кожу и мышцы нижних конечностей. Здесь находится самый длинный нерв - седалищный. Он выходит из полости таза и иннервирует заднюю поверхность бедра, голени и стопы. По-латыни этот нерв называется nervus ischiadicus, то есть нерв, «реагирующий на боль в бедре». Воспаление седалищного нерпа бывает, как правило, очень болезненным. Эта форма невралгии настолько широко распространена, что заслужила собственное наименование - ишиас.

Однако человеческое тело не удается разделить на четко отличающиеся друг от друга сегменты. Во-первых, сегменты несколько искажены в результате эволюционных изменений, которые претерпели примитивные хордовые в ходе своего филогенетического развития. Вот яркая иллюстрация: диафрагма - это плоская мышца, отделяющая грудную полость от полости живота. Можно ожидать, что эта мышца иннервируется грудными нервами, но в действительности это не так. В эмбриональном периоде диафрагма формируется в области шеи плода, поэтому логично предположить, что она снабжается шейными нервами. Так в действительности и есть. Потом диафрагма спускается ниже и «тянет» за собой «свои» нервные стволы.

Кроме того, многие мышцы и другие органы формируются в местах, где к ним подходят нервы из двух прилежащих друг к другу сегментов. Такое перекрывание встречается весьма часто, и существует мало таких мышц, которые не получали бы иннервацию от двух сегментов. Это повышает надежность всей системы, поскольку в этом случае повреждение какого-либо нерва, конечно, ослабляет мышцу, но не приводит к полному ее параличу.

И наконец, сами нервы не находятся в полной изоляции друг от друга после того, как покидают спинной мозг. Несколько близлежащих нервов часто склонны переплетаться друг с другом, в результате чего образуются структуры, которые называются нервными сплетениями. При этом каждый нерв не теряет своей индивидуальности, но их переплетение настолько тесное, что практически невозможно проследить ход каждого индивидуального нерва в сплетении. Например, первые четыре нерва шейного отдела спинного мозга образуют шейное сплетение, а остальные четыре шейных нерва и четыре верхних грудных нерва образуют плечевое сплетение, так как оно располагается на уровне верхней части плеча. Другие грудные нервы не образуют сплетений, представляя собой индивидуальные межреберные нервы. Поясничные нервы вновь образуют сплетение, естественно, поясничное. Крестцовые нервы не отстают от поясничных и образуют свое, крестцовое сплетение.

Вообще, если происходит повреждение спинного мозга вследствие его заболевания или травмы, то в половине тела, расположенной ниже повреждения, наступает полная потеря чувствительности и развивается паралич. Если спинной мозг повреждается выше четвертого шейного позвонка, то развивается паралич грудной клетки и дыхания. Именно поэтому так опасно «ломать шею». Смерть при повешении наступает не столько от перелома шейных позвонков, сколько от разрыва спинного мозга в шейном отделе.

Различные спинно-мозговые нервы функционируют не изолированно, а в строгом взаимодействии друг с другом и с головным мозгом. Белое вещество спинного мозга состоит из пучков нервных волокон, которые идут вверх и вниз по ходу спинного мозга, соединяя между собой различные его части. Те волокна, которые передают импульсы вниз от головного мозга, называются нисходящими путями (трактами), а те, которые передают импульсы вверх, к головному мозгу, называются восходящими путями (трактами).

Я уже упоминал пирамидную систему - один из нисходящих путей. Этот путь берет начало в двигательной зоне коры головного мозга, проходит через базальные ганглии и ствол мозга, потом спускается вниз по обеим половинам спинного мозга, образуя синапсы, то есть соединения, с различными спинномозговыми нервами. Таким образом, мышцы конечностей и туловища, которые иннервируются спинно-мозговыми нервами, подчиняются произвольному контролю со стороны коры головного мозга. Другие нисходящие пути, например экстрапирамидная система, проходят через разные уровни центральной нервной системы. Мышцы туловища и конечностей, соединенные подобным образом со стволом мозга, подчиняются, например, импульсам, поступающим из мозжечка, что позволяет человеку сохранять равновесие при стоянии и ходьбе.

Восходящие пути собирают информацию о различных ощущениях и доставляют ее вверх, в головной мозг, через активирующую ретикулярную формацию. Именно благодаря этой информации головной мозг получает возможность принимать решения и адекватно реагировать на изменения во внешней среде.



АВТОНОМНАЯ НЕРВНАЯ СИСТЕМА

Нервные волокна можно разделить на два класса, в зависимости от того, иннервируют они органы, подчиняющиеся или не подчиняющиеся произвольному контролю. Органы, о которых мы думаем, что они подчиняются контролю сознания, являются но большей части скелетными мышцами. Именно с помощью произвольного сокращения различных групп мышц мы приводим в движение кости, соединенные между собой суставами, и заодно переносим в пространстве внекостные структуры. Движения конечностями, наклоны туловища, движения нижней челюстью, языком и управление мимикой - все это находится под контролем сознания.

Скелетные мышцы словно футляром одевают все внутренние органы и конечности, поэтому мы способны по желанию двигать всеми частями тела. При поверхностном взгляде может создаться впечатление, что мы способны двигать самим телом, а не мышцами. По этой причине нервы, идущие к скелетным мышцам и от них, называются соматическими нервными волокнами (от греческого слова «сома», что значит «тело»).

Внутри тела, вдали от невооруженного глаза, находятся органы, которые не подчиняются произвольному контролю со стороны сознания в истинном смысле этого слова. Вы можете, например, заставить себя дышать быстрее или глубже, но это трудно, и, как только вы устанете, дыхание вновь перейдет под контроль неосознаваемых механизмов и начнет осуществляться в автоматическом режиме, независимо от вашего сознания, которое вы можете потерять, если будете упорствовать в своих усилиях. Кроме того, вы не можете волевым усилием заставить сердце биться быстрее или медленнее (правда, если вы отличаетесь живым воображением, то можете это сделать, но не прямо, а опосредованно, например внушив себе сильный страх). Другие органы работают даже тогда, когда вы даже не задумываетесь об их существовании. Зрачки глаз сужаются и расширяются, то же самое происходит с различными мелкими сосудами в разных областях тела. Железы могут выделять больше или меньше секрета и так далее.

Те органы, которые не подчиняются произвольному контролю, обычно называются внутренними, или висцеральными. Этот термин, по-видимому, происходит от искаженного латинского слова, означающего «вязкий» или «липкий». Нервные волокна, которые снабжают висцеру, называются висцеральными нервами. Надо думать, что нервные волокна, которые управляют органами под контролем сознания, не могут следовать по организму теми же путями, что нервные волокна, которые управляют какими-либо органами без участия сознания. Последние, если можно так выразиться, замыкают контур, минуя сознание. Для этого в организме должны существовать какие-то особые нервные механизмы.

Так, чувствительные волокна, не важно, соматические или висцеральные, идут от различных органов в центральную нервную систему. Двигательные волокна, которые являются соматическими и, таким образом, управляют произвольными движениями, начинаясь непосредственно в центральной нервной системе, направляются к органам, которые они иннервируют. Висцеральные же нервные волокна не идут непосредственно к органам, которые иннервируют. Я бы сказал, что это нечто новое. Их путь к органам-мишеням делится на два раздельных этапа. Один вид волокон идет из центральной нервной системы к ганглиям (ганглии, если вы помните, - это скопления тел нервных клеток), которые находятся вне центральной нервной системы. Эти волокна первого вида называются преганглионарными волокнами. В ганглиях эти волокна образуют синаптические связи с дендритами около двадцати нервных клеток каждое. Аксоны этих клеток второго вида называются постганглионарными волокнами. Именно эти постаганглионарные волокна направляются к висцеральным органам обычно в составе какого-либо спинального, то есть спинно-мозгового нерва, поскольку эти нервы являются кабелями, которые содержат нервные волокна самых различных типов.

Эти два вида висцеральных волокон, преганглионарные и постганглпопарные, взятые вместе с самими ганглиями, дают нам часть нервной системы, которая управляется автономно, то есть является автономной нервной системой. Главные ганглии, из которых состоит автономная нервная система, образуют цепи ганглиев, расположенных по обе стороны спинного мозга. Они находятся вне позвоночника, образуя по обе его стороны две цепочки, похожие на бусы, не находясь внутри серого вещества спинного мозга или в составе задних корешков спинного мозга.

Эти две цепи ганглиев, расположенных вне позвоночного столба, напоминают пару бус, причем их нити представляют собой последовательность из 22 или 23 объемных образований, сформированных скоплениями тел нервных клеток. Нижние концы обеих цепочек встречаются и продолжаются дальше в виде одной нити. Эти цепочки ганглиев называют иногда симпатическими стволами1.


1 Словом «симпатический» в прошлом пользовались для описания автономной нервной системы, потому что, согласно древним теориям, считалось, что деятельность внутренних органов регулируется симпатически. Слово «симпатия» происходит из греческого языка и означает «сострадание». Действие может быть продиктовано не только внешними силами, но также и внутренним импульсом сочувствия к страданиям другого. Так же и орган может действовать не в силу внешней необходимости, но в силу «сострадания» другому органу и в интересах всего организма. В настоящее время, как я укажу ниже, термином «симпатический» обозначается один из отделов автономной нервной системы.
Отнюдь не все ганглии симпатической нервной системы располагаются в симпатических стволах. Случается так, что нервное волокно проходит сквозь симпатический ствол, не образуя синапсов в ганглии, и направляется к ганглию, расположенному впереди позвоночника. Такие ганглии называются превертебральными (предпозвоночными), или коллатеральными, ганглиями.

Спланхнические нервы («спланхна» - «внутренности», греч.) начинаются вместе со спинномозговыми нервами грудного отдела спинного мозга. Их преганглионарные волокна заканчиваются в массе узлов (сплетении), расположенном непосредственно позади желудка. Это сплетение называется спланхническим и представляет собой самое крупное скопление нервных клеток за пределами центральной нервной системы. Действительно, иногда это скопление называют абдоминальным мозгом (по-латыни «абдомен» означает «живот»). Тем, кто занимался боксом, это сплетение лучше известно как солнечное сплетение. Слово «солнечный», вероятно, применено к этому сплетению потому, что оно напоминает крупное округлое тело, из которого, подобно лучам, исходят нервные стволы. Согласно другой теории, «солнечным» это сплетение называется потому, что тот, кто получает удар в это место, испытывает такую боль, что для него на время меркнет солнечный свет.

В некоторых случаях ганглии, отделяющие преганглпопарные волокна от постганглиопариых, расположены внутри органов, к которым направляются нервы. В этом случае преганглионарное волокно проходит весь путь до иннервируемого органа, в то время как длина постганглионарного волокна составляет обычно всего несколько миллиметров.

Те волокна автономной нервной системы, которые берут свое начало в спинно-мозговых сегментах от первого грудного до второго или третьего поясничного (то есть в середине спинного мозга), составляют в совокупности симпатический отдел автономной нервной системы. Поскольку эти нервы берут свое начало в поясничном и грудном отделах, то эту часть называют также пояснично-грудным отделом автономной (вегетативной) нервной системы. Те же волокна, которые берут начало выше и ниже волокон симпатического отдела, называют, в совокупности, парасимпатическим отделом автономной нервной системы, или кранио-сакральным отделом (от латинских слов cranium - «череп» и sacrum - «крестец»).

Разница между этими двумя отделами автономной нервной системы заключается не только в месте их происхождения. Например, эти отделы различаются по своему строению. Преганглиопарные волокна симпатической нервной системы закапчиваются либо в симпатическом стволе, либо в превертебральных ганглиях, так что эти волокна относительно коротки. Постганглионарные волокна, которые должны пройти путь до периферических органов, отличаются относительно большой длиной. Напротив, волокна парасимпатической нервной системы, выходя из спинного мозга, идут не прерываясь до органов-мишеней. В результате преганглионарные волокна очень длинны, а постганглионарные - коротки.

Точно так же эти два отдела автономной нервной системы оказывают на организм противоположные действия. Симпатический отдел представлен во внутренних органах более широко, но есть органы, которые одновременно получают как симпатическую, так и парасимпатическую иннервацию. Когда такое происходит, то каждый из этих двух нервов противодействует эффекту другого. Так, симпатические волокна ускоряют ритм сердечных сокращений, расширяют зрачки, увеличивают просвет бронхов и подавляют активность гладкой мускулатуры желудочно-кишечного тракта. Напротив, парасимпатические нервы замедляют ритм сердечных сокращений, сужают зрачки и бронхи и стимулируют повышенную активность гладкой мускулатуры желудочно-кишечного тракта. Симпатическая нервная система сужает кровеносные сосуды в одних местах (например, в коже и внутренних органах) и расширяет в других (например, в сердце и скелетных мышцах). Напротив, парасимпатическая нервная система там, где она присутствует, расширяет первые сосуды и сужает вторые.

Два отдела автономной нервной системы различаются между собой и по биохимическим характеристикам. Все нервные окончания, не относящиеся к автономной нервной системе, выделяют ацетилхолин, когда к ним приходит нервный импульс. Это верно также и в отношении преганглионарных нервных волокон автономной нервной системы, но есть отклонение от обычной нормы в постаганглионарных нервных окончаниях. Постганглионарные нервные окончания парасимпатической нервной системы секретируют ацетилхолин, а нервные окончания постганглионарных симпатических волокон - нет. Они секретируют вещество, которое до открытия его химической структуры называли симпатином. Со временем было обнаружено, что симпатии - это не что иное, как норэпинефрин (еще его называют норадреналином), вещество, очень похожее на эпинефрин (адреналин), который мы обсуждали в главе 2. Те нервные окончания, которые секретируют ацетилхолин, называют холинергическими нервами, а те, которые секретируют норадреналин, - адренергическими нервами.

Секреция норадреиалина в нервных окончаниях симпатической нервной системы вполне логична, так как симпатическая нервная система готовит организм к экстремальным ситуациям, так же как гормон адреналин. Симпатическая стимуляция ускоряет ритм сердечных сокращений и расширяет кровеносные сосуды сердца и скелетных мышц, чтобы мышцы могли сокращаться с большей силой и скоростью. Симпатическая нервная система стимулирует расширение бронхов, чтобы легкие могли вдохнуть больше воздуха, а организм получить больше кислорода. Симпатическая нервная система выключает кровоснабжение кишечника и желудка, угнетает перистальтические сокращения их гладкой мускулатуры и уменьшает кровоснабжение кожи. Пищеварение может подождать, когда кровь нужна в другом, более важном месте. Симпатическая нервная система поддерживает функцию почек, ускоряет высвобождение в кровь глюкозы и даже стимулирует умственную деятельность. Симпатическая нервная система делает то же самое, что и адреналин, да и чего можно ожидать от соединения, которое является практически близнецом адреналина?

Действительно, этот пример показывает, что химическая и электрическая системы регуляции функций организма не являются независимыми, так как мозговое вещество надпочечников можно стимулировать симпатическими волокнами, в ответ на стимуляцию которыми надпочечник секретирует адреналин, так что его эффект добавляется к эффектам симпатической нервной системы, что помогает проведению импульсов по симпатическим нервам. Симпатическая нервная система также стимулирует секрецию АКТГ гипофизом, что, в свою очередь, стимулирует секрецию кортикостероидов корой надпочечников. Эти же гормоны необходимы организму при стрессе. Напротив, парасимпатический отдел выводит организм из состояния готовности, когда экстремальная ситуация разрешается.

Симпатическая нервная система и мозговое вещество надпочечников также не являются жизненно необходимыми частями организма, если не считать того, что при их отсутствии воздействие стрессовых ситуаций может оказаться смертельным, так как организм потеряет возможность адекватно отвечать на стресс и экстремальные состояния. Тем не менее, можно, не ожидая смертельного исхода, удалить мозговое вещество надпочечников и пересечь симпатические нервные пути. Более того, если обеспечить такому организму тепличные условия существования, то он даже не будет испытывать заметных неудобств.


Глава 10

ОЩУЩЕНИЯ И ВОСПРИЯТИЕ




ТАКТИЛЬНЫЕ ОЩУЩЕНИЯ

(прикосновение)
После того как я описал структуру и строение нервной системы, настало время подумать, как же работает эта система. Очень легко видеть, что для того, чтобы нервная система могла управлять действиями организма с пользой для последнего, она должна постоянно оценивать детали окружающей среды. Бесполезно быстро опускать голову, если ей не грозит столкновение с каким-то предметом. С другой стороны, очень опасно не сделать этого, если такая угроза существует.

Для того чтобы иметь представление о состоянии окружающей среды, надо ее ощущать или воспринимать. Организм ощущает окружающую среду путем взаимодействия специализированных нервных окончаний с теми или иными факторами среды. Взаимодействие интерпретируется центральной нервной системой способами, которые отличаются друг от друга в зависимости от природы воспринимающих нервных окончаний. Каждая форма взаимодействия и интерпретации выделяется в виде особого вида сенсорного (чувственного) восприятия.

В обыденной речи мы обычно различаем пять чувств - зрение, слух, вкус, обоняние и тактильную чувствительность, или ощущение прикосновения. Мы располагаем отдельными органами, каждый из которых отвечает за один из видов восприятия. Образы мы воспринимаем с помощью глаз, слуховые стимулы с помощью ушей, запахи достигают нашего сознания через нос, вкус мы ощущаем языком. Эти ощущения мы можем сгруппировать в один класс и назвать специализированными ощущениями, так как каждое из них требует участия особого (то есть специального) органа.

Для восприятия тактильных ощущений не требуется никакого особого органа. Нервные окончания, воспринимающие прикосновения, рассеяны по всей поверхности тела. Осязание - это пример общего ощущения.

Мы довольно плохо дифференцируем ощущения, восприятие которых не требует участия специальных органов, и поэтому говорим о прикосновении как о единственном ощущении, которое мы воспринимаем кожей. Например, мы часто говорим, что какой-то предмет «горяч на ощупь», хотя в действительности прикосновение и воздействие температуры воспринимаются разными нервными окончаниями. Способность воспринимать прикосновение, давление, жар, холод и боль объединяется общим термином - кожная чувствительность, так как нервные окончания, которыми мы воспринимаем эти раздражения, находятся в коже. Эти нервные окончания называются также экстероцепторами (от латинского слова «экстра», что означает «снаружи»). Экстероцепция существует также внутри организма, так как окончания, расположенные в стенке желудочно-кишечного тракта, по сути, являются экстероцепторами, поскольку этот тракт сообщается с окружающей средой посредством рта и заднего прохода. Можно было бы считать ощущения, возникающие в результате раздражения этих окончаний, разновидностью внешней чувствительности, но ее выделяют в особый вид, называемый интероцепцией (от латинского слова «интра» - «внутри»), или висцеральной чувствительностью.

Наконец, существуют нервные окончания, передающие сигналы от органов самого тела - от мышц, сухожилий, связок суставов и тому подобного. Такая чувствительность называется проприоцептивной («проприус» па латинском языке означает «собственный»). Мы меньше всего осознаем именно проприоцептивную чувствительность, воспринимая результаты ее работы как нечто само собой разумеющееся. Проприоцептивную чувствительность реализуют специфические нервные окончания, находящиеся в различных органах. Для наглядности можно упомянуть о нервных окончаниях, расположенных в мышцах, в так называемых специализированных мышечных волокнах. При растяжении или сокращении этих волокон в нервных окончаниях возникают импульсы, которые передаются по нервам в спинной мозг, а потом, по восходящим трактам, в ствол головного мозга. Чем больше степень растяжения или сокращения волокна, тем больше порождается импульсов в единицу времени. Другие нервные окончания реагируют на давление в ступнях при стоянии или в ягодичных мышцах при сидении. Есть и другие разновидности нервных окончаний, реагирующих на степень напряжения в связках, на угол взаимного расположения костей, соединенных в суставах, и так далее.

Нижние отделы мозга обрабатывают поступающие сигналы от всех частей тела и используют эту информацию для координации и организации движений мышц, призванных сохранять равновесие, менять неудобное положение тела и приспосабливаться к внешним условиям. Хотя обычная работа организма по координации движений во время стояния, сидения, ходьбы или бега ускользает от нашего сознания, определенные ощущения иногда достигают коры большого мозга, и благодаря им мы в любой момент времени отдаем себе отчет в относительном положении частей нашего тела. Мы, не глядя, точно знаем, где и как расположен наш локоть или большой палец ноги, и с закрытыми глазами можем прикоснуться к любой названной нам части тела. Если кто-то согнет нашу руку в локте, мы точно знаем, в какое положение переведена наша конечность, и для этого нам не надо на нее смотреть. Для того чтобы это делать, нам необходимо постоянно интерпретировать бесчисленные сочетания нервных импульсов, поступающих в мозг от растянутых или изогнутых мышц, связок и сухожилий.

Различные проприоцептивные восприятия иногда объединяются общим названием позиционного чувства, или чувства положения. Часто это чувство называется кинестетическим (от греческих слов, обозначающих «чувство движения»). Неизвестно, в какой степени это чувство зависит от взаимодействия сил, развиваемых мышцами, с силой гравитации. Этот вопрос стал особенно актуальным для биологов в последнее время, в связи с развитием космонавтики. Во время длительных космических полетов космонавты долгое время пребывают в состоянии невесомости, когда проприоцептивная чувствительность лишена сигналов о привычном воздействии гравитации.

Что же касается экстероцептивной чувствительности, воспринимающей такие модальности, как прикосновение, давление, жар, холод и боль, то она опосредуется нервными импульсами, которые генерируются в нервных окончаниях определенного типа для каждого вида чувствительности. Для восприятия всех видов раздражителей, кроме болевых, нервные окончания обладают определенными структурами, которые называются по именам ученых, впервые описавших эти структуры.

Так, тактильные рецепторы (то есть структуры, воспринимающие прикосновения) часто заканчиваются тельцами Мейсснера, которые были описаны немецким анатомом Георгом Мейсснером в 1853 году. Рецепторы, воспринимающие холод, называются колбочками Краузе, по имени впервые описавшего в 1860 году эти структуры немецкого анатома Вильгельма Краузе. Тепловые рецепторы называются концевыми органами Руффини, по имени итальянского анатома Анджело Руффини, который описал их в 1898 году. Рецепторы давления называются тельцами Пачини, по имени итальянского анатома Филиппо Пачини, который описал их в 1830 году. Каждый из этих рецепторов легко отличить от прочих рецепторов по его морфологическому строению. (Однако болевые рецепторы представляют собой просто оголенные окончания нервных волокон, лишенных каких-либо структурных особенностей.)

Специализированные нервные окончания каждого типа приспособлены для восприятия только одного вида раздражения. Легкое прикосновение к коже в непосредственной близости от тактильного рецептора вызовет возникновение импульса в нем, но не вызовет никакой реакции в других рецепторах. Если же к коже прикоснуться теплым предметом, то на это отреагирует тепловой рецептор, а прочие не ответят никакой реакцией. В каждом случае нервные импульсы сами по себе идентичны в любом из этих нервов (действительно, импульсы идентичны во всех нервах), но их интерпретация в центральной нервной системе зависит от того, какой именно нерв передал тот или иной импульс. Например, импульс от теплового рецептора вызовет ощущение тепла вне зависимости от природы стимула. При стимуляции других рецепторов возникают также специфические ощущения, характерные только для данного вида рецепторов и не зависящие от природы стимула.

(Это верно и для специализированных органов чувств. Общеизвестен факт, что когда человек получает удар в глаз, то из него «сыплются искры», то есть головной мозг интерпретирует как свет любое раздражение зрительного нерва. Резкое надавливание на глаз также вызовет ощущение света. То же самое происходит при стимуляции языка слабым электрическим током. У человека при таком раздражении появляется некое вкусовое ощущение.)

Кожные рецепторы расположены не в каждом участке кожи, и там, где присутствует рецептор какого-либо типа, могут отсутствовать рецепторы других типов. Кожу можно картировать по различным видам чувствительности. Если мы воспользуемся тонким волоском, чтобы прикасаться к различным участкам кожи, то обнаружим, что в некоторых местах человек воспринимает прикосновение, а в некоторых - нет. Затратив еще немного труда, мы можем подобным же образом картировать кожу по тепловой и холодовой чувствительности. Промежутки между рецепторами невелики, и поэтому в обыденной жизни мы практически всегда отвечаем на стимулы, которые раздражают нашу кожу. Всего в коже расположены 200 000 нервных окончаний, реагирующих на температуру, полмиллиона рецепторов, реагирующих на прикосновение и давление, и около трех миллионов болевых рецепторов.

Как и следует ожидать, тактильные рецепторы наиболее густо расположены в языке и в кончиках пальцев, то есть в тех местах, которые самой природой предназначены для исследования свойств окружающего мира. Язык и кончики пальцев лишены волосяного покрова, но в других участках кожи тактильные рецепторы связаны с волосами. Волосы - мертвые структуры, полностью лишенные чувствительности, но все мы хорошо знаем, что человек ощущает любое, даже легчайшее прикосновение к волосам. Очевидный парадокс объясняется очень просто, если мы поймем, что при прикосновении к волосу он сгибается и, как рычаг, оказывает давление на расположенный рядом с ним участок кожи. Таким образом, происходит стимуляция тактильных рецепторов, расположенных в непосредственной близости от корня волоса.

Это очень полезное свойство, так как оно позволяет нам чувствовать прикосновение без прямого контакта кожи с инородным предметом. Ночью мы можем определить местонахождение неодушевленного предмета (который мы не можем увидеть, услышать или учуять), если коснемся его нашими волосами. (Существует еще способность к эхолокации, которую мы вскоре будем обсуждать.)

Некоторые ночные животные доводят до совершенства свою «волосяную чувствительность». Самый знакомый пример - семейство кошачьих, к которым относятся известные всем домашние кошки. У этих животных есть усы, которые зоологи называют вибриссами. Это длинные волосы, они касаются предметов на довольно большом удалении от поверхности тела. Волосы довольно жесткие, поэтому физическое воздействие передается к коже без затухания, то есть с минимальными потерями. Вибриссы расположены вблизи пасти, где концентрация тактильных рецепторов очень высока. Таким образом омертвевшие структуры, нечувствительные сами по себе, стали чрезвычайно тонкими органами восприятия тактильных стимулов.

Если прикосновение становится более интенсивным, то оно начинает стимулировать тельца Пачини в нервных окончаниях, воспринимающих давление. В отличие от тактильных рецепторов, расположенных на поверхности кожи, органы восприятия давления локализованы в подкожных тканях. Между этими нервными окончаниями и окружающей средой находится довольно толстый слой ткани, и воздействие должно быть сильнее, чтобы преодолеть смягчающее воздействие этой предохраняющей подушки.

С другой стороны, если прикосновение длится достаточно долго, то нервные окончания тактильных рецепторов становятся все менее и менее чувствительными и, в конце концов, перестают реагировать на прикосновение. То есть вы осознаете прикосновение в самом его начале, но если его интенсивность остается неизменной, то ощущение прикосновения исчезает. Это разумное решение, потому что в противном случае мы постоянно ощущали бы прикосновение к коже одежды и множества других предметов, и эти ощущения загрузили бы наш головной мозг массой ненужной и бесполезной информации. В этом отношении подобным образом ведут себя и температурные рецепторы. Например, вода в ванне кажется нам очень горячей, когда мы ложимся в нее, но потом, по мере того как мы «привыкаем» к ней, она становится приятно теплой. Точно так же холодная озерная вода становится приятно прохладной через некоторое время после того, как мы в нее ныряем. Активирующая ретикулярная формация блокирует поток импульсов, которые несут бесполезную или незначимую информацию, освобождая головной мозг для более важных и насущных дел.

Для того чтобы ощущение прикосновения воспринималось длительно, необходимо, чтобы его характеристики постоянно менялись во времени и чтобы в него все время вовлекались новые рецепторы. Таким образом, прикосновение превращается в щекотку или ласку. Таламус способен до некоторой степени локализовать такие ощущения, но для точного определения места прикосновения в игру должна включиться кора большого мозга. Такое тонкое различение выполняется в сенсорной области коры. Так, когда нам на кожу садится комар, точный удар следует немедленно, даже без взгляда па несчастное насекомое. Точность пространственного различения варьируется в зависимости от места на коже. Мы воспринимаем как раздельные прикосновения к двум точкам на языке, удаленным друг от друга на расстояние 1,1 мм. Для того чтобы два прикосновения воспринимались как раздельные, расстояние между стимулируемыми точками на пальцах должно быть не менее 2,3 мм. В носу такое расстояние достигает 6,6 мм. Однако стоит сравнить эти данные с данными, полученными для кожи спины. Там два прикосновения воспринимаются как раздельные, если расстояние между ними превышает 67 мм.

При интерпретации ощущений центральная нервная система не просто дифференцирует один тип ощущений от другого или одно место раздражения от другого. Она также определяет интенсивность раздражения. Например, мы легко определяем, какой из двух предметов тяжелее, если возьмем по одному в каждую руку, даже если эти предметы похожи по объему и форме. Более тяжелый предмет сильнее давит на кожу, сильнее возбуждает рецепторы давления, которые в ответ разряжаются более частыми залпами импульсов. Мы можем также взвесить эти предметы, поочередно перемещая их вверх и вниз. Более тяжелый предмет требует большего мышечного усилия для преодоления силы тяжести при движениях одной и той же амплитуды, и наше проприоцептивное чувство скажет нам, какая из рук развивает большее усилие при поднятии своего предмета. (То же самое касается и других чувств. Мы различаем степень тепла или холода, интенсивности боли, яркости света, громкости звука и силы запаха или вкуса.)

Очевидно, что существует некий порог различения. Если один предмет весит 9 унций, а другой 18, то мы легко определим эту разницу даже с закрытыми глазами, просто взвесив эти предметы на ладонях рук. Если один предмет весит 9 унций, а другой 10, то нам придется «покачать» предметы на руках, но в конце концов верный ответ будет все же найден. Однако если один предмет весит 9 унций, а другой 9,5 унций, то определить разницу, скорее всего, не удастся. Человек будет колебаться, и его ответ может с равной долей вероятности оказаться как верным, так и ошибочным. Способность различать силу стимулов лежит не в абсолютной их разнице, а в относительной. Роль в различении предметов весом 9 и 10 унций соответственно играет разница в 10 %, а не абсолютная разница в одну унцию. Например, мы не сможем определить разницу между предметами весом в 90 и 91 унцию, хотя разница в весе составляет ту же самую одну унцию. Зато мы легко уловим разницу между предметами весом 90 и 100 унций. Однако нам будет довольно просто определить разницу между весами предметов, если один из них весит одну унцию, а другой одну унцию с четвертью, хотя разница между этими величинами намного меньше одной унции.

По-иному то же самое можно сказать так: организм оценивает разницу в интенсивности любых сенсорных стимулов по логарифмической шкале. Этот закон называется законом Вебера - Фехнера, по именам двух немецких ученых - Эрнста Генриха Вебера и Густава Теодора Фехнера, которые его открыли. Функционируя таким образом, органы чувств способны обработать больший диапазон интенсивностей стимулов, чем это было бы возможно при линейном их восприятии. Предположим, например, что какое-то нервное окончание может при максимальном воздействии разряжаться в двадцать раз чаще, чем при минимальном. (При уровне раздражения выше максимального наступает повреждение нерва, а при уровне ниже минимального ответ попросту отсутствует.) Если бы нервное окончание реагировало на раздражение по линейной шкале, то максимальный стимул мог бы быть всего в двадцать раз сильнее минимального. При использовании же логарифмической шкалы - даже если взять 2 за основание логарифма - максимальная частота разрядов с нервного окончания будет достигнута, если максимальный стимул будет в два в двадцатой степени раз выше, чем минимальный. Это число приблизительно равно миллиону.

Именно благодаря тому, что нервная система работает согласно закону Вебера -Фехнера, мы способны слышать гром и шорох листвы, видеть солнце и едва заметные звезды.

БОЛЬ

Боль - это чувство, которое мы ощущаем, когда какой-либо аспект окружающей среды становится опасным для какой-либо части тела. Это воздействие не обязательно должно быть экстремальным, чтобы вызвать боль - достаточно царапины, по, естественно, чем сильнее воздействие, тем сильнее боль. Какое-либо воздействие может обычно не вызывать боли, но причиняет ее, если сила воздействия становится слишком большой и может стать причиной повреждения ткани. Например, это может быть слишком сильное воздействие, чрезвычайно высокая или, наоборот, низкая температура, или слишком громкий звук, как и слишком яркий свет. Эти модальности восприятия могут вызвать боль, если их интенсивность выходит за некоторые рамки.

От всех остальных видов кожной чувствительности боль отличается тем, что к ней меньше всего адаптируются. К боли очень трудно привыкнуть. Каждый знает, что, например, зубная боль может продолжаться, продолжаться и продолжаться. Такое положение имеет разумное обоснование, поскольку боль не просто сообщает нервной системе какую-то информацию, она взывает о помощи, если помощь возможна. Если бы боль со временем исчезала, как ощущение нежного прикосновения, то заболевание, вызывающее боль, с большой долей вероятности может усугубиться и вызвать необратимые повреждения, а может быть, и смерть.

Однако для таких случаев, когда причину боли невозможно устранить, человек, естественно, начал искать средство уменьшить боль как таковую, чтобы страдалец мог, по крайней мере, умереть без сильных мучений. Или, если боль сопровождает попытку вылечить какое-либо заболевание, как это, например, бывает при удалении зуба или при хирургической операции, то боль по возможности надо уменьшить или полностью устранить.

Еще первобытный человек на заре истории открыл, что экстракты различных растений (для примера можно назвать опийный мак и коноплю) подавляют боль. Эти вещества оказывают наркотический («притупляющий», греч.) или анальгетический («обезболивающий», греч.) эффект и до сих пор применяются в медицинской практике. Самым распространенным анальгетиком до сих пор является морфин, производное опия, несмотря на то что к нему может развиться болезненное пристрастие, невзирая на введение в практику множества синтетических обезболивающих препаратов. Мягким анальгетиком является и ацетилсалициловая кислота, больше известная под своим торговым названием аспирин.

В 1884 году американец австрийского происхождения офтальмолог Карл Коллер ввел в медицинскую практику кокаин для обезболивания ограниченных участков кожи и обезболивания хирургических глазных операций. (Свойства этого соединения исследовал в свое время другой австриец, Зигмунд Фрейд, который впоследствии прославился па другом поприще.) Кокаин - это экстракт листьев южноамериканского растения коки. Туземцы жевали эти листья для уменьшения боли, снятия усталости и даже для утоления голода. (Такое облегчение было, конечно, иллюзорным, поскольку не устраняло причин этих состояний.) Химики упорно искали соединения, которые, не уступая кокаину в обезболивающем действии или даже превосходя его, не обладали бы в то же время его многочисленными нежелательными побочными эффектами. Самым лучшим из таких соединений оказался прокаин, или, если использовать более распространенное название, новокаин.

Для того чтобы выполнять большие хирургические операции и сделать их более гуманными, надо было найти способ сделать человека нечувствительным к боли и операционной травме. Первый шаг в этом направлении сделал английский химик Хэмфри Дэви в 1799 году, когда он открыл газ - закись азота - и обнаружил, что вдыхание его делает человека нечувствительным к боли. Дэви предложил делать операции под ингаляциями вновь открытого газа. Со временем закись азота действительно стали использовать стоматологи, в практике которых закись азота получила более распространенное наименование «веселящего газа». Однако операции под общим обезболиванием, то есть при выключенной болевой чувствительности, стали впервые выполняться только в 40-х годах XIX века. При этом для обезболивания начали применять не закись азота, а пары эфира и хлороформа. Из этих двух веществ эфир оказался более безопасным, и он до сих пор является основным средством для наркоза. (Точнее, являлся во время написания книги. - Примеч. пер.)

В развитие метода внесли вклад многие, но первым был американский зубной врач Вильям Мор-тон, который в сентябре 1846 года успешно применил эфир в практике, а месяц спустя продемонстрировал его действие широкой врачебной аудитории во время операции, выполненной в Массачусетском генеральном госпитале в Бостоне. Американский врач Оливер Уэнделл Холмс (больше известный как поэт и эссеист) назвал воздействие эфира и хлороформа на организм анестезией (от греческого слова «бесчувствие»).

Механизм развития анестезии под воздействием анестетиков (веществ, которые вызывают анестезию) не ясен. Наиболее приемлемая теория гласит, что (поскольку все известные на сегодняшний день средства для наркоза хорошо растворяются в жирах) они концентрируются в жировых тканях организма. К жировым веществам относится и миелиновая оболочка нервных волокон, и анестетики каким-то образом, по-видимому, воздействуют на проведение по волокнам нервных импульсов. Чем больше концентрация анестетика, тем большая часть нервной системы выключается. Самой чувствительной частью к действию анестетиков является сенсорная область коры головного мозга, самой устойчивой - продолговатый мозг. И это поистине дар судьбы, поскольку деятельность сердца и легких управляется именно продолговатым мозгом. В настоящее время хирургические операции практически никогда не выполняются без анестезии, за исключением случаев, когда операция является экстренной, а анестетики не доступны.

Но с болью можно справиться и, так сказать, изнутри. Дело в том, что боль, хотя и в меньшей степени, чем другие виды чувствительности, модифицируется таламусом. Каждое ощущение направляется в разные участки таламуса, который, таким образом, различает их модальности. Участок, расположенный в самом центре зрительного бугра (таламуса), называемый медиальным ядром, и отвечает за разделение ощущений на приятные и неприятные. Холодный душ можно интерпретировать как приятное или неприятное воздействие в зависимости от температуры и влажности окружающей среды в большей степени, чем в зависимости от температуры воды, льющейся из душа. Ласка может быть приятной в одних условиях и неприятной в других, хотя воздействие в обоих случаях может быть совершенно одинаковым. Обычно приятные ощущения успокаивают, а неприятные расстраивают.

Даже боль может модифицироваться таламусом именно таким образом. Конечно, боль ни при каких обстоятельствах не может быть приятной, но степень неприятности можно сильно уменьшить. Возможно, самым замечательным является тот факт, что во время сражения или под влиянием сильных эмоций даже тяжелая травма может не приводить к осознанному ощущению боли. Создается такое впечатление, что бывают такие положения, когда организм не имеет права отвлекаться на такие «пустяки», как боль. При этом травма игнорируется, поскольку в этот момент перед человеком стоят более важные задачи, чем лечение повреждения. С другой стороны, страх боли и предчувствие ее усиливают силу восприятия этого ощущения. (Народная мудрость по этому поводу гласит, что храбрец умирает один раз, а трус - тысячу раз.)

На восприятие и ощущение боли большое влияние оказывают также общественные условия. Ребенок, воспитанный в обществе, где стоическое отношение к боли является признаком мужественности, переносит обряд инициации с мужеством, непостижимым для тех из нас, кто воспитан в убеждении, что боль - это зло, которого надо во что бы то ни стало избегать. Модификацию боли можно иногда выполнить сознательным усилием воли, и индийские факиры, за неимением лучшего применения такой способности, протыкают себе щеки иглами и спят на гвоздях, явно не чувствуя при этом никакой боли.

Обычных мужчин и женщин, которые профессионально не владеют искусством устранения боли, можно внушением ввести в такое состояние, при котором болевая чувствительность у них будет подавлена (при этом сознание этих людей должно быть в той или иной степени выключено). Этот феномен известен людям с глубокой древности, и некоторые люди заслужили репутацию кудесников своей способностью вводить других людей в состояние, близкое к трансу, а потом заменяли их подавленную волю, если можно так выразиться, своей волей. Из самых известных людей такого рода был австрийский врач Фридрих Антон Месмер, который в 70-х годах XVIII века вскружил голову всему парижскому высшему обществу.

Работа Месмера была наполнена мистикой, что и дискредитировало его деятельность. В 40-х годах XIX века шотландский врач Джеймс Брэйд заново открыл явление, которым занимался Месмер, внимательно изучил поведение людей, погруженных в необычное состояние, и назвал это состояние нейрогипнозом. Брэйд очистил понятие от мистики, и после этого феномен стали использовать в клинической медицине под сокращенным названием «гипноз» («сон», греч.).

Гипноз ни в коем случае не является инструментом, способным заставить человека делать что-то невозможное мистическим или сверхъестественным путем. Скорее, это метод, призванный заставить человека совершать под контролем сознания такие поступки и действия, какие он не способен совершать в обычном состоянии. Так, в состоянии гипнотического транса человеку можно внушить, что он не чувствует боль, но он не будет чувствовать ее и в том случае, если будет отчаянно бороться за свою жизнь или спасать из огня собственного ребенка. Однако гипноз, каким бы профессиональным он ни был, никогда не сможет заставить загипнотизированного подняться над землей хотя бы на дюйм вопреки закону всемирного тяготения.

Интероцептивная, или висцеральная, чувствительность практически всегда проявляется ощущением боли. Вы можете пить горячий кофе или ледяной кофе-глясе, но чувствовать разницу в их температуре вы будете только до тех пор, пока жидкость находится во рту. Как только кофе будет проглочен, ощущение тепла или холода немедленно исчезает. Никто и никогда не ощущает прикосновения или давления, когда пища проходит по желудочно-кишечному тракту. В определенных условиях человек может испытывать боль во внутренних органах, но эта боль не обязательно вызывается теми же стимулами, которые вызывают кожную боль. Порез внутреннего органа и даже самого мозга не причиняет боли. Однако при растяжении стенки кишки может возникнуть сильная боль, как это бывает, например, при кишечной колике или несварении желудка, когда полости желудочно-кишечного тракта переполняются скопившимися газами. Подобным же образом растяжение внутричерепных сосудов приводит к знакомой всем и каждому головной боли. Вообще при скоплении жидкостей в полостях тела может развиться сильная боль, как это бывает при камнях в желчном пузыре или почках. Причиной боли может стать и воспаление, как при аппендиците или артрите. Боль может стать результатом спазмы мышцы, такая боль называется судорогой.

Одним из отличий висцеральной боли от кожной является то, что висцеральную боль очень трудно локализовать, то есть точно указать ее местоположение. Боль в животе чаще всего бывает разлитой, и человек не может показать пальцем определенное место и сказать: «Болит вот здесь», в отличие, например, от боли в поцарапанной голени.

Часто случается так, что боль четко локализована, но место ее ощущения отстоит далеко от места, где находится вызвавшая ее причина. Такая боль называется отраженной. Боль от воспаленного червеобразного отростка (он находится в нижнем правом отделе живота) может часто ощущаться под грудиной. Боль при стенокардии, которая развивается при недостаточном снабжении кровью сердечной мышцы, может ощущаться в левом плече или предплечье. Головная боль тоже может быть отраженной, так как ее причиной может стать перенапряжение глазных мышц. Эта «неправильная» локализация боли может быть настолько типичной, что ее используют для диагностики тех или иных заболеваний.

В этом месте я бы хотел сделать паузу. Прежде чем перейти к специализированным органам чувств, надо сказать, что мы отнюдь не исчерпали список общих ощущений. Вероятно, это действительно так, поскольку у нас есть способность ощущать некоторые вещи при полном непонимании природы этой способности, мы считаем ее даром Неба. Например, очень похоже, что мы обладаем «чувством времени», которое позволяет нам с поразительной точностью отсчитывать промежутки текущего времени. Многие из нас способны просыпаться по утрам в одно и то же время с удивительным постоянством. Кроме того, очень соблазнительно думать, что у нас есть и другие чувства, о которых мы вообще ничего не знаем. Вполне вероятно, что существует способность улавливать радиоволны, радиоактивное излучение, магнитные поля и тому подобное. На это, правда, можно ответить только одно: «Что ж, может быть».

Есть даже предположение о том, что есть отдельные выдающиеся личности с уникальными способностями воспринимать окружающий мир помимо каких-либо известных органов чувств. Эти последние часто обозначаются как способности к экстрасенсорному восприятию. Примерами экстрасенсорного восприятия являются телепатия (чувство на расстоянии), когда некто может на расстоянии непосредственно улавливать мысли и чувства других людей; ясновидение, представляющее собой способность воспринимать события, происходящие в другом месте, вне досягаемости органов чувств; и прорицание, способность чувствовать события, которые еще не произошли.

Все эти способности плюс еще несколько (того же сорта) очень и очень привлекательны. Люди хотят верить, что можно знать гораздо больше, чем мы знаем, пользуясь нашими обычными органами чувств. Что есть некая магическая сила, которой, возможно, смогут научиться пользоваться и они. Экстрасенсорное восприятие того или иного сорта являлось основой мистики, колдовства и самообмана, которыми полна история человечества. Пользовались этими приманками и многие откровенные мошенники и шарлатаны. Было показано, что многие экстрасенсы па поверку оказываются обычными жуликами и аферистами (хотя многие вполне трезво мыслящие люди были готовы поклясться, что способности этих обманщиков истинны). Многие до сих пор считают, что ученые слишком неохотно признают реальность таких случаев, вне зависимости от обстоятельств.

В последние годы работы американского психолога Джозефа Бэнкса Раина придали изучению экстрасенсорного восприятия налет респектабельности. Автор сообщил о феноменах, которые было нелегко объяснить, не прибегая к предположению о существовании каких-то форм экстрасенсорного восприятия. Однако эти феномены подтверждаются лишь, по меньшей мере, спорными методами статистического анализа, индивидуальными, весьма спорадическими проявлениями данных способностей у некоторых индивидов и контрольными исследованиями, которые большинство ученых не признает адекватными. В целом работу Раина нельзя признать достоверно значимой. Более того, самые ярые сторонники экстрасенсорного восприятия вовсе не похожи на людей, готовых серьезно изучать эти феномены, людей, которые, как правило, намного умереннее в своих оценках и предположениях. Как правило, апологеты экстрасенсорного восприятия испытывают сильную антипатию к общепринятым методам научного анализа, что делает их духовными наследниками шарлатанов и мистиков прошлого.



ВКУС

Общая чувствительность в целом отвечает за восприятие физических факторов окружающей среды - механических сил и разницы температур. Два из специализированных органов чувств - глаз и ухо - также реагируют на физические факторы - световые и звуковые волны соответственно.


Особняком стоят органы, воспринимающие ощущения вкуса и запаха. Эти органы воспринимают и различают химическое строение молекул. Другими словами, из двух веществ, попавших на поверхность языка, имеющих одинаковую температуру, оказывающих на язык одинаковое давление, одно будет стимулировать возникновение множества нервных импульсов, а второе нет. Единственная разница между этими веществами заключается в их химическом строении. То же самое относится к двум парам, которые мы вдыхаем через нос. По этой причине обоняние и вкус объединяются в группу химических ощущений. Язык - это орган, ответственный за восприятие вкуса. Поверхность языка покрыта мелкими выростами, которые называются сосочками. Сосочки, расположенные на краях и кончике языка, малы и при рассмотрении под микроскопом имеют коническую форму, напоминая по форме шляпку гриба, и называются поэтому грибовидными. Именно эти сосочки придают языку характерную бархатистость. Ближе к задней части языка сосочки становятся крупнее, поверхность его приобретает шероховатость. Эти сосочки окружены желобками, подобно тому, как крепости окружены рвом. Это желобовидные сосочки.

Рецепторы вкуса образуют скопления, называемые вкусовыми почками. Эти скопления располагаются на поверхности сосочков и на близлежащих участках слизистой оболочки полости рта. Вкусовые почки представляют собой пучки клеток, образующих яйцевидную структуру с порой на вершине. Описано четыре типа вкусовых почек. Каждый тип реагирует на особую совокупность веществ, а их сигналы интерпретируются центральной нервной системой как определенные характеристики вкуса.

Принято классифицировать вкус на четыре основные категории - сладкое, соленое, кислое и горькое. Каждый вкус вызывается воздействием определенных групп веществ. Сладость мы ощущаем под воздействием Сахаров, солоноватость - под воздействием некоторых неорганических ионов, кислоту ощущаем, простите за каламбур, под действием кислот, а горечь - под действием алкалоидов. Польза такой классификации очевидна. Сахар является важной составной частью пищи. Он легко всасывается и быстро используется организмом для получения энергии. Любая естественная пища, имеющая сладкий вкус, кажется нам вкусной, а таламус интерпретирует ее как приятную.

Напротив, кислота свидетельствует о том, что плод, который мы сорвали, еще не созрел и не накопил того количества сахара, который вскоре придаст плоду сладкий вкус. Таламус интерпретирует такой вкус как неприятный. Это правило еще более верно в отношении горького вкуса, присутствие алкалоидов в пище говорит о том, что она потенциально ядовита, и действительно большинство алкалоидов ядовиты и имеют весьма горький вкус. Поэтому горечь воспринимается как неприятный вкус. Горький кусок немедленно выбрасывается, чаще всего его даже не глотают, а выплевывают.

Солоноватость есть прямая мера содержания в пище минеральных веществ. Ионы натрия и хлора, составляющие вместе поваренную соль, которая дала название вкусовому ощущению, являются самыми распространенными ионами, содержащимися практически в любой пище. Будет ли соль приятной на вкус, зависит от концентрации соли в крови. Если содержание соли низко вследствие уменьшения ее поступления с пищей либо вследствие повышенных потерь, то поваренная соль кажется нам очень вкусной.

Разные типы вкусовых почек распределены на языке неравномерно. Кончик языка лучше всего различает сладость, а задняя часть его больше всего чувствительна к горечи. Ощущения соленого и кислого лучше всего воспринимаются по краям языка. Не одинаково чувствителен язык и к разным модальностям вкуса. Менее всего язык чувствителен к сладкому. Концентрация сахара в жидкости должна превысить 1:200, чтобы мы начали ощущать жидкость как сладкую. Это разумно, так как, если пища представляется нам сладкой, несмотря на такую притупленную чувствительность к сладкому, значит, она содержит значительное количество энергетического материала и ее стоит есть.

Соленое не так ценно для организма, как сладкое; соль мы чувствуем, когда ее концентрация в растворе начинает превышать 1:400. Кислота, как еще менее желательная составляющая часть пищи, улавливается нами в виде ионов водорода при его концентрации, превышающей 1:130 000. И наконец, самое неприятное ощущение, горечь, вызывается при весьма низких концентрациях алкалоидов в растворе. Чувство горечи - самое тонкое у человека. Например, одна часть хинина, приходящаяся на 2 000 000 частей воды, придает раствору отчетливо горький вкус. Вы заметили, что я все время говорю о растворах? Дело в том, что для того, чтобы мы почувствовали вкус какого-либо вещества, оно должно сначала раствориться в слюне или в воде. Если положить на абсолютно сухой язык абсолютно сухой кусок сахара, мы не почувствуем никакого вкуса. Крахмал, который состоит из сахаров, нерастворим, и поэтому не имеет вкуса.

Каким именно способом то или иное вещество стимулирует ощущение того или иного вкуса, неизвестно. Тот факт, что многие вкусовые ощущения стимулируются огромным количеством различных веществ, нисколько не помогает пролить свет на решение проблемы. Самым регулярным и у играет роль в ощущении вкуса еды. Однородный желеобразный десерт кажется вкуснее, чем отвратительные комья того же состава. Жирная пища часто кажется отталкивающей, хотя масло само по себе не обладает неприятным вкусом.

Однако самый большой вклад в неприятные свойства пищи вносит ощущение, обусловленное восприятием запаха, к рассмотрению которого мы сейчас перейдем.

ЗАПАХ

Запах отличается от вкуса дальностью восприятия. В то время как восприятие вкуса требует непосредственного физического контакта вещества с поверхностью языка, запах действует на большом расстоянии. Самка мотылька привлекает самца с расстояния полумили, выделяя в воздух определенные пахучие вещества. (Хотя восприятие запаха не требует прямого контакта твердого или жидкого вещества с организмом, он воспринимает молекулы паров этого вещества. Эти молекулы контактируют с организмом, так что и в данном случае имеет место прямой контакт, хотя и в несколько измененном виде. Однако, поскольку мы, как правило, не осознаем присутствия паров так, как мы чувствуем присутствие твердых или жидких веществ, и поскольку пары проделывают с током воздуха дальний путь, прежде чем попасть в наш организм, будет довольно сказать, что запах воспринимается организмом на большом расстоянии.) Таким образом, запах - это модальность, оказывающая воздействие на дальнем расстоянии.

Другие сенсорные модальности можно дифференцировать подобным же образом. Тактильные ощущения, чувство давления, боль - все эти ощущения требуют прямого контакта с раздражающими агентами, во всяком случае как правило. В меньшей степени это относится к ощущению температуры, так как тепловое воздействие может передаваться и на расстоянии. Вы можете уловить тепло, которое излучает горячая печь в другом конце комнаты, и вы определенно чувствуете тепло, исходящее от солнца, которое удалено от нас на расстояние 93 000 000 миль. Но восприятие тепла (и, в меньшей степени, холода) на больших расстояниях требует большой его интенсивности, и для того, чтобы определить температуру какого-либо не слишком горячего предмета, нам для этого обычно приходится прикоснуться к нему. (Холод не является феноменом, независимым от тепла. Это просто его недостаток. Вы улавливаете тепло, воспринимая кожей излучение тепла от какого-то источника. Вы чувствуете холод, когда кожа сама начинает излучать тепло в окружающую среду, - в первом случае температура кожи повышается, во втором снижается. Огонь имеет температуру на 600 о С выше, чем температура нашей кожи, но нам редко приходится в обыденной жизни сталкиваться с предметами, которые были бы холоднее нашей кожи больше чем на 100 о С. Именно поэтому мы на расстоянии воспринимаем тепло лучше, чем холод.)

Два оставшихся чувства - слух и зрение - в чем-то подобны восприятию запаха, так как слуховые и зрительные стимулы воспринимаются на больших расстояниях. Но для большинства млекопитающих именно восприятие запаха является наиболее важным. Обоняние имеет свои преимущества: зрение зависит (по самой своей природе) от солнца и по большей части бесполезно ночью, а обоняние служит животному как днем, так и ночью. Слуховое восприятие зависит от звука, и если животное А хочет обнаружить животное Б, то животное Б может скрыться от преследования, не производя никаких звуков. Запах же не зависит от сознательного контроля. Спрятавшееся животное может быть немо, как могила, но оно не может скрыть свой запах.

Хищные животные отыскивают добычу преимущественно по запаху, то же самое делают травоядные по отношению к своим смертельным врагам. Более того, умение воспринимать запахи может привести к удивительно топким различениям. Пчела по запаху отличает представителей своего роя от остальных пчел, самка морского котика узнает своих детенышей по запаху среди тысяч других детенышей, которые нам кажутся совершенно одинаковыми. Чистокровная собака-ищейка может пройти через всю страну по следу одного человека, ориентируясь по его запаху, не спутав его с запахом других людей.

У приматов вообще и у человека в частности обоняние уступило главенствующую роль в распознавании далеко расположенных объектов зрению. Это произошло не столько в результате улучшения его остроты, сколько в результате притупления обоняния. А в способности распознавать запахи мы далеко уступаем собакам. Это находит свое физическое отражение в том факте, что обонятельная зона в нашем носу занимает намного меньше места, уменьшены и относительные размеры участка мозга, отвечающего за восприятие и анализ запахов.

Но даже при этом обоняние человека не является столь рудиментарным и ненужным, как мы могли бы подумать, сравнивая себя с собаками. Конечно, мы не можем отличить одного человека от другого по запаху, но положа руку на сердце мы не слишком часто пытаемся это делать. Кстати, в интимных отношениях индивидуальные запахи играют довольно значительную роль. И не случайно запахи порой пробуждают в нас воспоминания о давно виденных предметах и людях, о которых мы, казалось бы, прочно забыли.

Рецепторы запахов находятся в двух пятнах, расположенных в слизистой оболочке верхней части полости носа. Эти пятна окрашены желтым пигментом и имеют площадь около двух с половиной квадратных сантиметров каждое. Обычно пары проникают в верхние носовые ходы путем диффузии, но этот процесс можно ускорить, если усилить вдох. Поэтому, когда мы хотим уловить слабый запах, мы резко втягиваем носом воздух.

Так как носовая полость открывается в глотку, то пары и мелкодисперсные капли пищи, которую мы едим, проникают в полость носа и тоже достигают обонятельных рецепторов. То, что мы обычно считаем вкусом, является в действительности сочетанием вкуса и запаха, и именно последний придает пище богатство и тонкость сложного аромата. При простуде слизистая оболочка носа отекает и набухает, притупляя обоняние, и временно препятствует парам контактировать с обонятельными рецепторами. Это не влияет на способность языка различать сладкое, кислое, соленое и горькое, но каким же примитивным и неудовлетворительным кажется нам при этом вкус пищи, которую мы едим! Чистый вкус настолько неудовлетворителен, что, как правило, страдающий насморком человек считает, что совершенно не воспринимает вкус, хотя вкусовые почки его языка продолжают функционировать безотказно.

Обоняние, несмотря на то что у человека оно притуплено, все же отличается большей тонкостью, чем вкус. Способность распознать вкус хинина в концентрации одна частица на 2 миллиона меркнет перед способностью различить запах меркаптана (вещества, которое выделяет разозленный скунс) в концентрации одна частица на 30 миллиардов.

Более того, обоняние устроено гораздо сложнее, чем способность воспринимать вкус. Ученым не удалось даже составить таблицу индивидуальных запахов, которые могли бы служить стандартами сравнения для пахучих смесей. Были также попытки классифицировать запахи на категории - эфирные, ароматические, парфюмерные, амброзиевые, чесночные, горелые, козлиные и гнилостные, но это были очень грубые попытки, не давшие удовлетворительных результатов.

Механизм, согласно которому одна молекула пахучего вещества возбуждает один тип рецепторных клеток, а вторая - другой, остается неизвестным. Недавно было высказано предположение, что химические вещества пахнут тем или иным образом в зависимости от формы их молекул, в зависимости от способности проникать сквозь мембраны клеток рецепторов и в зависимости от способности молекул вибрировать с определенной частотой. Вещества, имеющие одинаковые перечисленные признаки, одинаково пахнут. Однако все эти теории носят пока чисто умозрительный и предположительный характер.

Каков бы ни был механизм восприятия запаха, сама по себе эта способность поистине замечательна. Некоторые органы чувств человека можно смоделировать и изготовить приборы, имитирующие работу этих органов, но до сих пор не создано приспособление, воспринимающее запахи. По-видимому, они не будут созданы и в обозримом будущем, поэтому пока ни шеф-поварам, ни дегустаторам, ни составителям духов не грозит безработица.


Каталог: wp-content -> uploads -> 2011
2011 -> Программа государственной итоговой аттестации выпускников гапоу со «актп» по профессии спо 23. 01. 03 Автомеханик на 2016-2017г
2011 -> Оповещатели охранные
2011 -> Организмы и среды их обитания
2011 -> Правила обследования и мониторинга технического состояния buildings and constructions. Rules of inspection and monitoring of the technical condition. General requirements
2011 -> Хранение информации на взу
2011 -> Путь к успеху в бизнесе (биотехнологии на вооружении бизнеса) Москва 2012 Ратников Борис Константинович
2011 -> «Направления использования служб сети Internet для решения информационных задач»
2011 -> Прямое получение железа


Поделитесь с Вашими друзьями:
1   ...   25   26   27   28   29   30   31   32   ...   43


База данных защищена авторским правом ©vossta.ru 2019
обратиться к администрации

    Главная страница