Рассмотрим результат наблюдений Х за постоянной физической величиной Q как случайную величину, принимающую различные значения Z, в различных наблюдениях за ней. Значения будем называть результатами отдельных наблюдений.
Наиболее универсальный способ описания случайных величин заключается в отыскании их интегральных или дифференциальных функций распределения [1].
Под интегральной функцией распределения результатов наблю-дений понимается зависимость вероятности того, что результат наблюдения в i-м опыте окажется меньшим некоторого теку-щего значения х, от самой величины х:
|
(4)
|
Здесь и в дальнейшем большие буквы используются для обозначения случайных величин, а маленькие - значений, принимаемых случайными величинами. Поскольку функция распределения вероятности представляет собой вероятность, то она удовлетворяет следующим свойствам:
На рис.2 показаны примеры функций распределения вероятности.
Более наглядным является описание свойств результатов наблюдений и случайных погрешностей с помощью дифференциальной функции распределения, иначе называемой плотностью распределения вероятностей:
|
(5)
|
Физический смысл f(x) состоит в том, что произведение f(x)dx представляет вероятность попадания случайной величины Х в интервал от х до х + dx , т.е.
|
(6)
|
Свойства плотности распределения вероятности:
- вероятность достоверного события равна 1;
иными словами, площадь, заключенная между кривой дифференциальной функции распределения и осью абсцисс, равна единице;
- вероятность попадания случайной величины в интервал от до .
От дифференциальной функции распределения легко перейти к интегральной путем интегрирования:
|
(7)
|
Размерность плотности распределения вероятностей, как это следует из формулы (7), обратна размерности измеряемой величины, поскольку сама вероятность - величина безразмерная.
Используя понятия функций распределения, легко получить выражения для вероятностей того, что результат наблюдений Х или случайная погрешность примет при проведении измерения некоторое значение в интервале или .
В терминах интегральной функции распределения имеем:
т.е. вероятность попадания результата наблюдений или случайной погрешности в заданный интервал равна разности значений функции распределения на границах этого интервала.
Заменяя в полученных формулах интегральные функции распределения на соответствующие плотности распределения вероятностей согласно выражению (7), получим формулы для искомой вероятности в терминах дифференциальной функции распределения:
|
(8)
|
|
(9)
|
Таким образом, вероятность попадания результата наблюдения или случайной погрешности в заданный полуоткрытый интервал равна площади, ограниченной кривой распределения, осью абсцисс и перпендикулярами к ней на границах этого интервала. Необходимо отметить, что результаты наблюдений в значительной степени сконцентрированы вокруг истинного значения измеряемой величины и по мере приближения к нему элементы вероятности их появления возрастают. Это дает основание принять за оценку истинного значения измеряемой величины координату центра тяжести фигуры, образованной осью абсцисс и кривой распределения, и называемую математическим ожиданием результатов наблюдений:
|
(10)
|
В заключение можно дать более строгое определение постоян-ной систематической и случайной погрешностей.
Систематической постоянной погрешностью называется отклонение математического ожидания результатов наблюдений от истинного значения измеряемой величины:
|
(11)
|
а случайной погрешностью - разность между результатом единичного наблюдения и математическим ожиданием результатов
|
(12)
|
В этих обозначениях истинное значение измеряемой величины составляет
.
|
(13)
|
Поделитесь с Вашими друзьями: |