Занимательная гидрогеология



страница6/11
Дата28.11.2017
Размер1.85 Mb.
1   2   3   4   5   6   7   8   9   10   11

Чудесный дар природы

 

В один из зимних дней мы шли на лыжах по глубокому снегу, уставшие, в окаменевшей одежде, покрытой льдом. Вечерело. Мороз с каждым часом крепчал. Наш проводник скомандовал: «Идем на Паужетку». Мы так устали, что уже никуда не хотелось идти. Затем еще полчаса пути и впереди - туча пара. Повеяло теплом. Как будто из зимы с ее трескучим морозом мы попали в теплое лето. Кругом мелькали струи горячей воды, вырывающиеся по трещинам пород, ручьи и небольшие озерца. Из них поднимались клубы пара, согревавшие всю долину. Кто-то предложил: «давайте купаться!». Сначала было даже подумать об этом страшно. А затем, когда, раздевшись, мы погрузились в горячую воду, то почувствовали, что вся усталость как-будто растаяла.



Мы находились на Камчатке в знаменитой долине терм - Паужетке. Здесь выходят многочисленные горячие источники. Однако Паужетка - только преддверие страны гейзеров - горячих источников, периодически извергающихся из-под земли. Если вы от нее пройдете еще немного на восток, то попадете в удивительную местность. Уже на расстоянии нескольких километров слышен могучий шум. По мере приближения слышится шипение и грохот. Встреченные реки несмотря на сильный мороз не имеют льда, а над ними поднимаются облака пара. Еще одно усилие, и вы замираете, пораженные невиданным зрелищем. Кругом из клубов пара взлетают фонтаны горячей воды. Самый крупный гейзер Великан выбрасывает фонтан воды с температурой более 100°С на высоту более 300 м. Неповторимая картина.

Гейзеры (от исландского слова geysa - хлынуть) встречаются во многих местах земли. В основном они связаны с вулканическими районами. Гейзеры чем-то напоминают настоящие ритмично извергающиеся вулканы. Отличие заключается в том, что вместо пепла, газов и лавы они выбрасывают пар и горячую воду. Замечательно, что интервалы между этими извержениями строго одинаковы. Что же является причиной ритмичности гейзеров?

Секрет заключается в форме каналов, соединяющих подземный резервуар пара и кипятка с поверхностью. Они имеют вертикальные участки и коленообразные (рис. 29).

Вода накапливается в вертикальной части канала гейзера и уравновешивает давление пара в резервуаре. От этого часть воды в нижней части водяной пробки перегревается, возрастающее при этом давление пара выдавливает часть воды за коленообразный изгиб, что в свою очередь приводит к резкому падению давления в резервуаре. Почти мгновенно находящаяся в нем вода превращается в пар, который с силой выбрасывает всю воду из вертикального канала в воздух, образуя фонтан гейзера.

 

действие гейзера

Рис. 29. Действие гейзера

 

Фонтанирующий пар и вода охлаждаются и, падая обратно в кратер, (его называют грифон) - углубление у выхода канала на поверхность земли, понижают температуру воды в верхней части вертикального канала. На этом извержение прекращается до следующего этапа перегрева.



Интервалы действия гейзеров зависят от строения каналов, глубины бассейнов, температуры и колеблются от минут до дней.

 

большой гейзер в исландии

Рис. 30. Большой гейзер в Исландии

 

Классическим примером массового развития гейзеров является Долина десяти тысяч дымов на Аляске. Ее происхождение обусловлено могучим извержением вулкана Катмая (1912 год). В этой долине протяженностью около 25 км имеются десятки тысяч бьющих из трещин паровых струй. Многие из них выбрасывают пар на высоту 100-200 м. Иногда это водные струи, бьющие до высоты 300 м. Выбрасываемые пары состоят на 99% из воды.



В отличие от обычных изменений температуры с глубиной в районах вулканов повышение температуры на 1°С происходит через 0,5-2 м. Это приводит к тому, что уже на глубине 50-100 м температура земной коры достигает 100°С и выше. Измерения температуры в районе Паужетской долины показали что уже на глубине 1-2 м она часто достигает 80-100°С.

На Камчатке термальные источники выходят во многих местах. В 60 км от города Петропавловска-Камчатского еще в 1741 году были открыты Большие банные источники. Здесь на поверхность выходит более 500 горячих источников с температурой от 80 до 105°С.

Другим районом СССР, богатым термальными водами, являются Курильские острова.

Во многих других странах мира, там, где располагаются вулканы, также известны гейзерные и термальные поля. В этом отношении особой известностью пользуется Исландия. Здесь в 55 км от столицы страны Рейкьявика в долине реки Хауке находится поле гейзеров. Среди них знаменитый Большой гейзер, привлекающий толпы туристов (рис. 30). Когда-то он извергал мощную струю высотой до 150 м. Название гейзера было впоследствии распространено на подобные периодически действующие горячие источники. В 1957 г. Большой гейзер перестал извергаться. Еще до этого удавалось искусственно вызывать его активность забрасыванием в него 20-50 кг мыльного раствора.

В настоящее время в Исландии действует несколько десятков гейзеров, однако все они небольших размеров. Так, в 200 м от Большого гейзера, прямо у дороги, с шипением выбрасывает свои воды на высоту 35 м гейзер Строккур. Всего в Исландии насчитывается более 7000 горячих источников. Последние подсчеты специалистов показывают, что они могут давать грандиозную массу энергии, соответствующую энергии, получаемой при сжигании 7 млн. т нефти за этот же промежуток времени.

Мы стоим на поле горячих источников на полуострове Рейкьянес. Из скважины с глубины 1100 м с шипением выбрасываются облака пара, что-то клокочет, дрожит земля. Замеренная температура паров в этой скважине оказалась равной 286°С.

Исландские термальные воды отличаются от камчатских и вод других районов тем, что здесь широко распространены паро-газовые струи и отмечается присутствие большого количества кремнезема, а иногда и водорода. Термальные воды известны также в Новой Зеландии, Италии, Японии, США и в некоторых других странах.

 

Помидоры и огурцы, бананы и яблоки у Полярного круга

 

Как уже упоминалось, термальные воды - грандиозные источники энергии. Они как бы выносят на поверхность глубинное тепло земли, запасы которого практически неистощимы. Они могут отапливать дома, давать тепловую энергию электростанциям, снабжать теплом парники, наконец, поставлять горячую бытовую и техническую воду.



В СССР уже построена Паужетская термальная электростанция. Она получает энергию от сети скважин, у которых на выходе давление составляет 2-4 атм. и температура от 144 до 200°С. Она дает электроэнергию в 115 раз более низкую по стоимости, чем другие электростанции Камчатки. Некоторые источники используют для обогревания зданий на Камчатке.

На термальных водах вулканических районов построены термальные электростанции в восьми странах, дающие около 6 млрд. кВт электрической энергии в час.

Подобная станция имеется в Новой Зеландии, где температура термальной воды достигает 220°С при давлении до 25 атм. Имеются такие термальные станции в Италии, Японии, Исландии и некоторых других странах.

 

резервуары, собирающие термальные воды для снабжения горячей водой

Рис. 31. Резервуары, собирающие термальные воды для снабжения горячей водой столицы Исландии - Рейкьявика

 

Интересно комплексное использование термальных вод в районе Рейкьявика (Исландия). Здесь первая скважина для получения горячей воды была пройдена еще в 1928 г. в 3 км от города. Сейчас уже пробурены 23 скважины глубиной от 770 до 2200 м. Общее количество воды, получаемой из них, составляет 400 л/с, средняя температура ее 130°С.



Вода поступает в сборный коллектор, откуда она перекачивается по трубам в большие круглые резервуары на высоком холме, возвышающемся над городом (рис. 31). Чтобы вода не охлаждалась, трубы покрыты торфяными матами. В восьми резервуарах хранится 8400 м3 воды. Из них она устремляется самотеком к городским домам. В отопительную систему поступает вода с температурой 75°С. Пройдя через калориферы, она имеет температуру 35-40°С и идет для питья, приготовления пищи, стирки и других целей.

В Исландии построена разветвленная система парников и оранжерей, отапливаемых термальными водами. В них выращиваются огурцы, помидоры, картофель, фрукты. Из последних наиболее часто культивируются яблоки, однако есть теплицы, в которых выращивают виноград. Исландцы говорят, что если нужно, они могут с успехом выращивать бананы. Поэтому стол исландцев всегда украшен сравнительно дешевыми свежими овощами и фруктами.

Вместе с тем можно с сожалением отметить, что этот океан тепловой энергии пока мало используется. Даже в Исландии, где термы расположены буквально у порога селений и городов, имеется всего одна геотермальная электростанция.

Вместе с солнечным теплом термальные подземные воды могут явиться источником дешевой энергии для Советского Союза и многих других стран.

 

Вода-скала

 

На дворе январь. Запуржило, и покрыло землю снежным одеялом. Однако и оно не спасает верхнюю часть земной коры от промерзания. Попробуйте копнуть поверхность земли лопатой. Она упрется в прочную преграду. Вода, находящаяся в почве, превратилась в ледяные кристаллы и прочно сцементировала минеральные частицы. Образовавшийся лед сделал рыхлую породу прочной, как скала.



Наступила весна, и льда как не бывало. Ученые назвали это явление сезонной мерзлотой. Там, где климат оказывается настолько суровым, что за короткое и холодное лето смерзшие породы протаивают только в верхнем слое, на некоторой глубине в течение многих лет и даже столетий сохраняется слой замерзшего грунта, в котором часто имеются целые пласты-жилы льда.

Еще в XVI веке стало известно, что в Сибири имеются обширные районы с такими вечномерзлыми, или, точнее, многолетнемерзлыми, породами. В 1640 году Ленский воевода писал в донесении: «А в Якуцком, де, государь, по сказкам торговых и промышленных служилых людей, хлебной кашки не чаять; земля, де, государь, и среди лета вся не растаивает...»

В нашей стране многолетняя мерзлота встречена на территории в 10 млн. км2, что составляет почти 47% поверхности страны. Она распространена и во многих других странах: Гренландии, Канаде, США, Монголии, Китае, Антарктиде и др., занимая 26% поверхности суши. Толщина слоя мерзлоты колеблется от единиц до многих сотен метров. Особенно велик ее слой в Антарктиде. Освоение территорий, покрытых многолетней мерзлотой, - сложная и важная задача, поэтому возникла и широко развивается отрасль геологии - мерзлотоведение.

В нашу задачу не входит ознакомление читателей с этой интересной наукой, но гидрогеолог, работающий в районах распространения вечной мерзлоты, обнаруживает, что несмотря на существование ледяных жил, воды-скалы, жидкая подземная вода встречается и здесь. Она играет немаловажную роль в формировании рельефа, народнохозяйственном освоении этих территорий. Где же может помещаться жидкая вода в этом царстве холода?

Как видно, прежде всего, в верхнем слое, протаивающем в течение короткого быстротечного лета. Сюда же поступают и талые снежные воды. Сохраняющийся на глубине мерзлый слой породы является хорошим водоупором, ведь все поры его заполнены льдом.

 

наледь «затопила» дом

Рис. 32. Наледь «затопила» дом

 

Толщина протаивающего слоя зависит от климата местности и вида поверхностной породы. Чем южнее, тем теплей, и она больше. Под травянистой поверхностью, защищающей породы от яркого солнца, тепло распространяется на меньшую глубину, чем на открытой песчаной. На южном склоне холма тепла в грунты поступает больше, чем на северном. В общем мощность растаивающего слоя колеблется от сантиметров до 3-4 м.



Вот и накапливается за лето в талом слое надмерзлотная вода. Ее появление влечет за собой ряд неприятных последствий. Во многих случаях она служит причиной образования болот. Когда наступает зима и начинается промерзание поверхности, образующийся мерзлый слой как тисками сжимает жидкую воду. Ледяным панцирем сдавливает ее сверху и снизу. В ней возникает значительное давление, которое приводит к приподниманию поверхности земли и образованию на дорогах «пучин».

В ряде случаев вода вырывается из ледяных тисков и затапливает подвалы домов (рис. 32), выемки дорог, образуя наледи. Но с другой стороны, эти надмерзлотные воды могут служить источником хорошей питьевой воды.

Интересным фактом является существование жидкой воды непосредственно в вечно мерзлой толще. Это явление вызывало удивление первых исследователей. Ведь температуры в этих слоях отрицательные. Было обнаружено, что эта странность объясняется непрерывным движением воды по трещинам, а также частым присутствием в ней растворенных солей, понижающих температуру замерзания. Эти воды получили название межмерзлотных.

 

вот где находятся подземные воды в царстве вечной мерзлоты

Рис. 33. Вот где находятся подземные воды в царстве вечной мерзлоты

1 - воды надмерзлотные, 2 - межмерзлотные, 3 - лодмерзлотные; а - сезонное промерзание, б - слой вечной мерзлоты

 

В слоях вечной мерзлоты часто встречаются целые пласты или линзы ископаемого льда (рис. 33). Эти образования могут достигать десятка и более метров толщины. Такая твердая фаза может служить крупным источником питьевых вод, необходимо только научиться ее растаивать с наименьшей затратой энергии.



Иногда межмерзлотные воды по трещинам прорываются к поверхности и разливаются по ней. Но здесь их ждет мороз. И вот обширные площади от 100 м2 до 20 км2 покрываются ледяным панцирем - наледью. Если вода не может пробиться на дневную поверхность, она застывает на некоторой глубине, приподнимая вследствие увеличения объема земные слои. Так образуются ледяные бугры.

Чтобы завершить рассказ об удивительных водах, текущих под землей в областях вечной мерзлоты, следует кратко остановиться на подмерзлотных водах. Под многолетнемерзлой толщей широко распространены подземные воды. Они очень разнообразны и образуют целые бассейны. Глубина их залегания увеличивается с юга на север. Эти воды могут служить прекрасным источником промышленных, а иногда и питьевых вод.

 

ГДЕ ЖЕ ОНА?

 

Знахари и шарлатаны

 

Вода под землей невидима. Иногда она обнаруживает себя ключом, бьющим из стенки оврага, или плещется в старом колодце. Но чаще всего ее нужно искать. Но как искать? Где искать? Эти вопросы всегда стояли перед человеком. В большинстве случаев природа так хорошо спрятала подземную воду, что отыскать ее сразу не удавалось. Только по мере развития науки и техники люди научились находить ее даже в глубоких недрах земной коры.



В прошлые века, когда подземные воды представлялись человеку как непостижимая тайна, их искали знахари, водознатцы и даже церковники: Среди этих разнообразных «специалистов» было много мошенников и проходимцев. Для появления воды в сухом колодце свершались молебны, а в древней Руси - жертвоприношения. Вслед за пророком Моисеем, который, по библейскому сказанию, извлек воду из скалы простым ударом жезла, появились другие церковные притчи о святых, тем или иным способом извлекавших воду из земли. Не будем говорить об их достоверности, отметим только, что они свидетельствуют о существовании уже в древности необходимости поиска подземных источников.

Вместе с тем среди простого народа встречались умельцы, которых в центральных губерниях России часто именовали водознатцами, передававшими искусство поиска воды от поколения к поколению. Это были люди, которые в результате накопившегося векового опыта знали, где в данном районе может встречаться вода, каковы признаки участков с высоким стоянием грунтовых вод. Опыт передавался по наследству: отец передавал его сыну, сын детям и так совершенствовались способы поиска, в основном, неглубоко залегающих грунтовых вод, необходимых для постройки мелких сельских колодцев.

Приметами присутствия воды являлись виды растительности. Так, например, если встретился пырейный луг. то здесь может быть хорошая вода и главное - неглубоко. Там, где кустятся заросли солянок, вода близко, но она почти всегда солоноватая или неприятная на вкус. Если в июле-августе среди пожелтевшей травы мелькают пятна зелени, сохраняющие свою свежесть, - ищите здесь воду. А вот зашло солнце, и в воздухе затанцевали рои мошки. Присмотритесь к ним, они вьются над участками, где к поверхности близки грунтовые воды.

Вода чаще встречается на низких элементах рельефа, однако ее можно встретить и на бугорке, если сверху супесь, а на небольшой глубине - глина. Вода чаще там, где сверху более песчанистая почва. Ищите воду у речек, около озер. Эти и другие местные признаки широко использовались умельцами и знахарями для указания места закладки колодцев.

Некоторые водознатцы использовали для поисков кружечку. В ней у поверхности укрепляли на металлической сетке кусочек сахара. Такая кружка с сахаром ставилась вечером вверх дном на землю, а утром по степени увлажнения сахара и каплям на стенках оценивали близость к поверхности грунтовых вод. Кружечка переносилась с места на место, до того момента, когда водознатец принимал решение: рыть колодец в этом месте.

Как правило, накопленный опыт тщательно скрывали. Чтобы повысить свою ценность, знахари в элементы поиска вносили заклинания и различные культовые приемы. Среди них встречалось немало шарлатанов и проходимцев. Вместе с тем признаки близкого к поверхности залегания воды, обнаруженные народными умельцами, и сейчас представляют несомненный интерес.

 

«Ищейная» лоза и радиостезия

 

По степи, медленно шагая, движется человек. Он наклонил голову, как бы присматриваясь к чему-то. В его руках разветвленная ветка лозы, напоминающая по форме детскую рогатку. Два разветвленных конца находятся в его руках, а к земле повернут третий конец.



Человек идет, останавливается, делает шаг назад, замирает и опять движется, то уменьшая, то увеличивая наклон лозы. Несколько раз пройдя вперед, а затем, вернувшись назад, наконец останавливается, вытирает со лба пот и машет рукой, подзывая людей, наблюдавших за его действиями на соседнем пригорке.

Подошедшим крестьянам он указывает под свои ноги: «Здесь ройте колодец! Здесь будет вода!»

Так рассказывали о поисках воды с помощью лозы. Этим способом в XVI-XVII веках искали не только воду, но и металлические руды. Их называли в разных странах различно: «рудознатцы», «лозоносцы», «водознатцы», «прутоносцы» и т. д. В основе этого странного способа лежало ощущение лозоносца, в руках которого ивовый прут над участком высокого залегания грунтовых вод стремился повернуться (рис. 34).

Этот способ был известен и в глубокой древности. Ученые еще в прошлом веке делали попытки его научного обоснования. В результате сейчас возникло новое научное направление «радиостезия».

Вот как рассказывает доктор Радвановский из Варшавского политехнического института, занимающийся исследованиями явлений радиостезии. Человек является сложной биоэлектросистемой. Положительный потенциал занимает голову, а отрицательный - грудную клетку, живот и ладони рук. Атмосфера имеет положительную ионизацию, земля - отрицательную.

А теперь возьмем «волшебную палочку», изготовленную из нержавеющей стали и напоминающую расщепленную ветвь лозы. Она сделана в виде двух никелированных прутьев длиной 40 см из пружинящей стали, соединенных внизу оковкой из нержавеющей стали. Ручки снабжены свободными спиралями, позволяющими палочке свободно вращаться. Идем по участку. Доктор прочно держит все приспособление за ручки. И вдруг «палочка» начинает вращаться, делая поворот к земле. При дальнейшем движении «палочка» возвращается в исходное положение. Несколько шагов назад - и опять она описывает дугу и поворачивается к земле. Доктор говорит: «Это небольшая водяная жила». Он повторяет движения в разные стороны и указывает ее направление.

Этот эффект может получить каждый, а не какие-либо особо чувствительные люди. Каковы же причины, его порождающие?

 

лозоносец ищет воду

Рис. 34. Лозоносец ищет воду

 

Сейчас никого не удивляет, что радиоприемник «играет и разговаривает», а ведь никто не видит радиоволн. Человеческий организм при поисках воды в земле с помощью «палочки» действует как биологический радиоприемник, хотя иного типа волн, чем в радио. Явления радиостезии всегда вызывали удивление и недоверие людей. Сейчас, когда известно, что органические клетки являются полупроводниками, а органические жидкости - электролитами, многое стало понятным.



Грунтовые воды на отдельных участках двигаются с разными скоростями благодаря неоднородности грунта, как бы в природной трубе. При этом следует помнить, что она является электролитом со свойствами жидкого проводящего кристалла, в котором молекулы воды являются диполями. Поэтому поток грунтовой воды является как бы генератором, в котором возбуждение создается магнитным полем. И нет ничего удивительного, что над подземным потоком наблюдаются электромагнитные колебания, действующие на человека.

Конечно, это упрощение некоторых положений радиостезии, но их очевидность, как считает доктор Радвановский, не вызывает сомнений. Им разработан прибор, который действует на принципах радиостезии и регистрирует аномалии в изменениях полей Земли. Так постепенно начинают разгадывать тайну «ищейной» лозы.

Вместе с тем многие специалисты и в нашей стране и за рубежом отвергают этот метод как бесполезный. Надо полагать, что здесь слово за биофизикой - наукой, изучающей взаимодействие внешних физических полей с организмами. Биофизики должны либо дать обоснование радиостезии, либо отвергнуть ее. Однако, судя по всему, биофизические методы могут развиваться и послужить хорошим дополнением для поисков грунтовых вод, близко залегающих к дневной поверхности.

 

Вода, где ты?

 

Двадцатый век явился веком бурного развития науки и техники. Потребность в воде растет с каждым днем. Поверхностные водотоки загрязняются промышленными отходами и становятся малопригодными для водоснабжения. Уже сейчас во многих странах начинает ощущаться «водяной голод». Подземные воды нужны все больше и больше.



В результате многолетних исследований ученые создали гидрогеологические карты нашей страны. «Читая» такую карту, специалист может заранее предсказать те места, где можно найти подземные воды, а в ряде случаев даже примерно указать глубину их размещения.

Большую помощь в поисках воды оказывают геофизики - специалисты, изучающие строение земной коры с помощью физических методов. Арсенал современной геофизики велик. Давайте отправимся в гости к геофизикам.

...В степи работают два человека. Один сидит у ящика с панелью, на которой светятся циферблаты приборов. От ящика в стороны расходятся провода. Неподалеку другой человек ударяет регулярно кувалдой по какому-то круглому металлическому предмету. Подходим к работающим. Они любезно объясняют, что ведется микросейсмическая разведка территории. Каждый удар кувалды вызывает невидимые нами колебания пород. Возбуждаемые при этом микроколебания поверхности идут в глубину и, отражаясь от уровня грунтовых вод, регистрируются приборами. По этим отраженным микросейсмическим колебаниям можно установить глубину залегания поверхности воды. В основе этого метода лежит различие в скорости сейсмической волны в рыхлых песчано-глинистых породах и тех же образованиях, но насыщенных водой. Первая находится в пределах 220-620 м в секунду, а вторая - в пределах 1450-2560 м в секунду. ...

 

геофизики применяют для определения глубины грунтовых вод электрозондирование

Рис. 35. Геофизики применяют для определения глубины грунтовых вод электрозондирование:

MN - неподвижные стержни, А, В - перемещаемые стержни, Б - батарея, П - прибор для измерения

 

...А вот другая группа геофизиков забивает металлические стержни в землю, а потом ведет какие-то измерения на приборе, установленном на треноге. Можно сначала подумать, что это фотоаппарат. Нет, это потенциометр (или более совершенный прибор - счетно-решающий компенсатор), позволяющий измерить разность потенциалов и силу электрического тока в породах, слагающих поверхность земли. А уже по ним легко рассчитать электросопротивление пород. Эти методы получили название вертикального электрозондирования и электропрофилирования. Первый метод, его сокращенно называют ВЭЗ, позволяет в течение нескольких минут определить состав и мощность пород и положение уровня грунтовых вод. Для этой цели на поверхность земли забивают четыре электрода - трубы длиной 70-150 см (рис. 35). К крайним электродам (А, В) подводится от батареи электрический ток, а с помощью средних (М, N) определяется на потенциометре разность потенциалов. Раздвигая электроды АВ, мы как бы углубляемся в землю, исследуя сопротивление пород по глубине. Последнее равно одной трети расстояния АВ. Этим методом в зависимости от положения крайних электродов можно провести исследование залегания грунтовых вод на глубине от 10 до 100 м.



На рис. 36 показана зависимость сопротивления пород от их влажности и содержания солей. Таким образом, если мы знаем изменения его величины, то легко можно установить положение уровня грунтовых вод.

Электропрофилирование в отличие от ВЭЗ ведется без изменения соотношения между электродами ABMN. Здесь вся система электродов последовательно перемещается вперед по заданному направлению через строго определенные расстояния. Эти промежутки геофизики называют шагом установки. Электропрофилирование позволяет найти скопления подземных вод, выявить участки распространения минеральных и пресных вод и получить еще ряд других подземных данных.

 

вот как меняется сопротивление пород в зависимости от состава

Рис. 36. Вот как меняется сопротивление пород в зависимости от состава: а - песок, б - суглинок, в - глина; 1 - сухой, 2 - влажный пресный, 3 - влажный соленый (единица измерения Ом*м)

 

В наше время специалист, вооруженный информацией о строении участка, особенностях гидрогеологического строения, геологии территории, а также геофизическими данными, делает основной шаг в поисках воды - он намечает место, где необходимо расположить буровую скважину или колодец. Этот момент очень ответственный, ведь бурение и проходка колодцев стоят дорого и требуют затрат времени и сил. Этот первый очень важный подготовительный этап носит название поиска подземных вод.



Особенно трудно решение вопроса о глубоко залегающих подземных водах, артезианских и межпластовых, которые часто не регистрируются ни физическими методами, ни какими-либо внешними проявлениями. Здесь на помощь гидрогеологу приходят знания геологического строения верхней части земной коры.

Трудность предсказания в глубинных зонах подземных вод является основной причиной, по которой многие глубоко залегающие горизонты подземных вод были обнаружены лишь в последние десятилетия. Можно полагать, что еще многие подземные кладовые воды предстоит обнаружить и поставить на службу народному хозяйству страны.

 




Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   10   11


База данных защищена авторским правом ©vossta.ru 2019
обратиться к администрации

    Главная страница